Name: Index Number: Class:



# **DUNMAN HIGH SCHOOL Preliminary Examinations Year 6**

**GEOGRAPHY** 

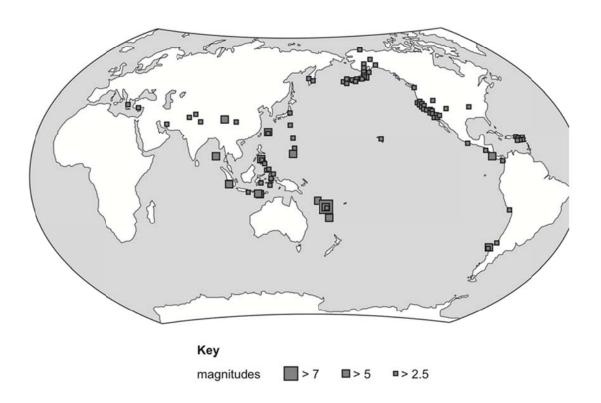
9730

(Higher 2)

Tues 17 Sept 2013 3 hours

Paper 1

Additional Materials: Answer Paper


**INSERT 1** 

#### **READ THESE INSTRUCTIONS FIRST**

This Insert contains all the Figures referred to in the question paper.

Fig. 1a for Question 1

## Location and magnitude of earthquakes



Location and Magnitude of Earthquakes

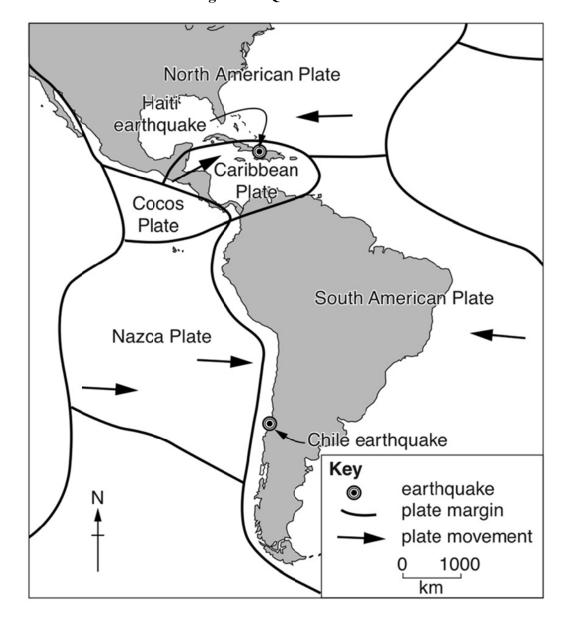
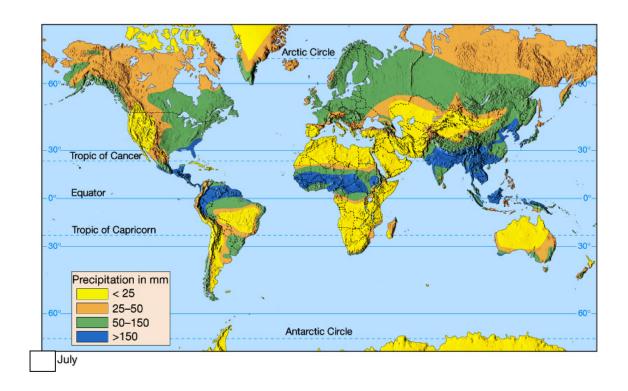




Fig. 1b for Question 1

Chile and Haiti Earthquake

Fig. 2 for Question 2



Global distribution of monthly precipitation for the month of July (in mm).

Fig. 3 for Question 3

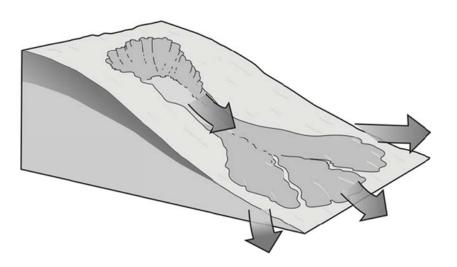
|                                       | Upstream site | Downstream site |
|---------------------------------------|---------------|-----------------|
| Average width (m)                     | 5.223         | 8.575           |
| Average depth (m)                     | 0.565         | 0.877           |
| Slope (°)                             | 0.5           | 0.5             |
| Tangent (gradient) of slope           | 0.009         | 0.009           |
| Hydraulic radius                      | 0.484         | 0.756           |
| Coefficient of roughness              | 0.04          | 0.03            |
| Estimated bankfull discharge (m3 s-1) | 2.904         | 9.988           |

# Photograph A for Question 3



**Location of Upstream Site** 

**Table 1 for Question 4** 


| year | location                   | nature of disaster              | deaths  |
|------|----------------------------|---------------------------------|---------|
| 1883 | Krakatoa                   | island volcano, tsunami         | 36,000  |
| 1900 | Galveston, USA             | hurricane, storm surge          | 6,000   |
| 1908 | Messina, Italy             | earthquake                      | 85,000  |
| 1920 | Gansu, China               | landslides caused by earthquake | 200,000 |
| 1927 | Tien Shan, China           | earthquake                      | 200,000 |
| 1951 | London                     | smog (smoke, fumes and fog)     | 2850    |
| 1970 | Bangladesh                 | tropical cyclone, storm surge   | 300,000 |
| 1972 | Hong Kong                  | landslips                       | 138     |
| 1974 | USA (Tornado Alley)        | 148 tornadoes in April          | 300     |
| 1980 | Mt St Helens USA           | volcano                         | 57      |
| 1985 | Nevado del Ruiz (Colombia) | volcano                         | 25,000  |
| 1986 | Bangladesh                 | cyclone                         | 2000    |
| 1989 | California                 | earthquake                      | 62      |
| 1995 | Kobe, Japan                | earthquake                      | 5000    |
| 1995 | Monserrat                  | volcano                         | 20      |
| 1998 | Nicaragua                  | hurricane                       | 3800    |
| 2003 | Algeria                    | earthquake                      | 2250    |

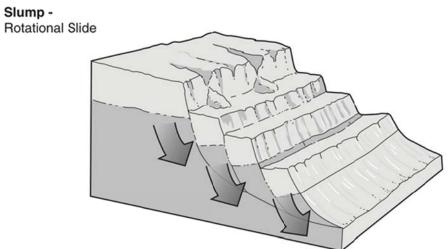

Number of deaths from natural hazards

Fig. 4 for Question 4

# Two types of mass movement affecting slopes

### Mudflow





Two types of mass movement

#### Fig. 5 for Question 5 Either

#### Predicting volcanic eruptions

# Satellites spot volcano ready to erupt

A volcanic eruption has been successfully predicted with the use of satellites.
Researchers disclosed yesterday that they had detected the impending eruption of Pacaya, in Guatemala, a week before it happened.

The team, using satellites with infra-red detectors, picked up a heat signal on May 13 indicating that hot magma was bubbling towards the surface. The volcano erupted on May 20 sending an ash cloud over Guatemala City and the airport 13 miles away.

Andrew Harris, of the Open University, said: "We saw it coming from space. To date this has not happened before."

The breakthrough may lead to the establishment of a worldwide automatic forecasting system for the 600 active volcanoes and many others considered potentially active.

The team also detected the eruption of a volcano in the remote Galapagos islands three hours before it began on September 15. The early warning gave experts on the ground time to move wildlife. The signals were picked up from the satellites by Chris Okubo, of the University of Hawaii.

The team also spotted the eruption of Popocatepetl,

near Mexico City, from space. The satellites detected a moderate eruption on the morning of November 24, 1998. Local ground-based teams recorded the same event and sounded the alarm one minute earlier. But many parts of the world where volcanoes could burst into life are too treacherous to have trained staff in place. Dr Harris said: "Some places are just too poor and have too many volcanoes."

The satellite system, even if it spots an eruption only as it occurs, may give emergency services vital hours or days to get people cleared from an impending lava flow.