	SWISS COTTAGE SECONDARY SCHOOL SECONDARY FOUR PRELIMINARY EXAMINATION			0	
Name		Academic Class	4	Α	
	Form Class Index Number	Form Class	4	S	

CHEMISTRY

6092/02

Paper 2

Wednesday 28 August 2024

1 hour 45 minutes

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer **all** questions. Write your answers in the spaces provided on the Question Paper.

Section B

Answer **one** question. Write your answers in the spaces provided on the Question Paper.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use		
Section A	/ 70	
Section B	/ 10	
Total	/ 80	

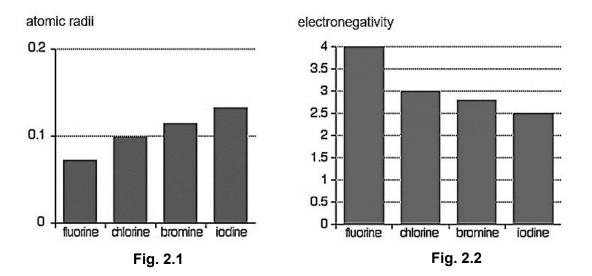
This document consists of **23** printed pages and **1** blank page.

[Turn over

Home of Thoughtful Leaders: Serve with Honour, Lead with Humility

Section A

Answer **all** questions.


A1 Use the list of elements to answer the questions.

	zinc	argon	fluorine	copper
	hydrogen	sodium	silicon	carbon
Eac	h element may be used once,	more than once or not a	at all.	
(a)	Name the element that form	s an amphoteric oxide.		
				[1]
(b)	Name the element that can	form ions with more tha	n one oxidation state.	
				[1]
(c)	Name the element that can	form a neutral oxide.		
				[1]
(d)	Name the element that is un	reactive.		
				[1]
(e)	Name the element that is a g	good oxidising agent.		
				[1]
(f)	Name the element that form	s an oxide with a giant o	covalent structure.	
				[1]
				[Total: 6]

A2 (a) Fig. 2.1 and Fig. 2.2 show some properties of Group 17 elements, the halogens.

Fig. 2.1 shows the atomic radii and Fig. 2.2 shows the electronegativity of the Group 17 elements.

Electronegativity is a measure of the tendency of an atom to attract a bonding pair of electrons. It is usually measured on the Pauling scale, on which the most electronegative element (fluorine) is given an electronegativity of 4.0.

(i) Use Fig. 2.1 to describe and explain the trend in atomic radii for halogens down the group.

(ii) Use Fig. 2.1 and Fig. 2.2 to state and explain the relationship between atomic radii and electronegativity of the halogens.
 [1]
 (iii) Predict and explain the electronegativity value of astatine, the next member of Group 17 element.

(b) Table 2.1 shows the melting points and boiling points of Group 1 elements, together with the atomic radii.

	element	melting point / °C	boiling point / °C	atomic radii / pm
	lithium	180	1330	145
Croup 1	sodium	98	890	180
Group 1	potassium	64	774	220
	rubidium	39	688	235

Table 2.1

(i) State the trend observed in the melting and boiling points of Group 1 elements.

.....[1]

(ii) Explain, in terms of bonding, the trend observed in (b)(i).

 A3 Table 3.1 shows some properties of oxyacids of chlorine.

name of acid	chemical formula	reaction with magnesium (all acids have the same concentration)	oxidation state of chlorine
hypochlorous acid	HC/O	only a few bubbles seen	
chlorous acid	HC/O ₂	reacts readily	
chloric acid	HC/O ₃	vigorous	
perchloric acid	HClO4	very vigorous	

Table 3.1

(a) Suggest why these acids are known as oxyacids.

.....[1]

- (b) Complete Table 3.1 by filling in the oxidation states of chlorine. [2]
- (c) State the relationship between the oxidation state of chlorine and the strength of the acids.Explain your reasoning using the information in Table 3.1.

(d) Identify the acid with the lowest electrical conductivity.

Explain your answer.

.....[1]

[Total: 6]

- A4 (a) Ammonia is produced by nitrogen gas and hydrogen gas during the Haber process.
 - (i) Since nitrogen is the most abundant gas in air, explain why air is **not** used as a raw material during the Haber process.

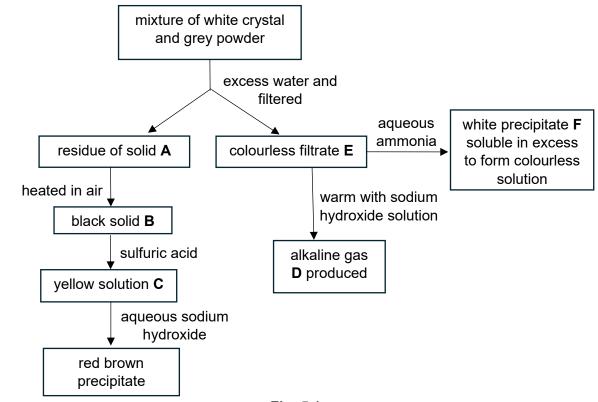
(ii) Concentrated aqueous ammonia is used to make fertilisers such as ammonium sulfate, (NH₄)₂SO₄. Aqueous ammonia reacts with dilute sulfuric acid to form ammonium sulfate, (NH₄)₂SO₄.

 $2NH_3(aq) + H_2SO_4(aq) \rightarrow (NH_4)_2SO_4(aq)$

A student titrates 20.0 cm³ of aqueous ammonia with 0.150 mol/dm³ sulfuric acid. 10.50 cm³ of sulfuric acid is required to neutralise the aqueous ammonia. Calculate the concentration, in mol/dm³, of the aqueous ammonia.

(b) Table 4.1 shows some fertilisers that are necessary for healthy plant growth. Some of the elements needed by plants are nitrogen, potassium and phosphate.

type of fertiliser	rpe of fertiliser chemicals commonly used		
potassium-based fertilisers	potassium chloride	KC/	
	ammonium nitrate	NH4NO3	
nitrogen-based fertilisers	urea	CO(NH ₂) ₂	
nhaanhata fartiliaara	calcium dihydrogen phosphate	Ca(H ₂ PO ₄) ₂	
phosphate fertilisers	calcium sulfate	CaSO ₄	


Table 4.1

Calculate the percentage by mass of nitrogen in ammonium nitrate and urea to determine which fertiliser would give more nitrogen per kg.

(c) A chemical company makes salts for use in fertilisers.

To make calcium sulfate, the company started with limestone, which is calcium carbonate. Briefly describe how pure calcium sulfate can be made from calcium carbonate.

[2]

A5 A mixture of grey powder and white crystals undergoes a series of reactions as shown in Fig. 5.1.

Fig. 5.1

(a) Identify substances A, B, C and D.

	Α
	Β
	C
	D[4]
(b)	There are two cations present in filtrate E . Give the formulae of the two cations present in filtrate E .
	[1]
(c)	Write the ionic equation for the formation of precipitate F .
	[1]
(d)	To test for the anion present in filtrate E , a student added acidified silver nitrate solution to a sample of E . No visible change was observed. What can be concluded from this statement?
	[1]

[Total: 7]

A6 Many metal carbonates thermally decompose to form carbon dioxide and metal oxide. Four 2.00 g samples of carbonates are heated strongly until there is no further change in their masses.

Table 6.1 shows the mass of solid remaining at the end of the heating.

Table 6.1

metal carbonate	mass before heating / g	mass after heating / g
calcium carbonate	2.00	1.12
copper(II) carbonate	2.00	1.29
magnesium carbonate	2.00	0.95
zinc carbonate	2.00	1.35

(a) Calculate the percentage yield of carbon dioxide formed when 2.00 g of zinc carbonate is heated.

 (b) Explain why the mass of carbon dioxide formed is different for each metal carbonate.
 [1]
 (c) In two separate experiments, hydrogen was passed over heated aluminium oxide and heated copper(II) oxide. Describe the observation, if any, you would expect to see in each experiment. Explain your reasoning.
 [2]
 [Total: 6]

[3]

A7 A student electrolysed aqueous copper(II) sulfate using the set-ups shown in Fig. 7.1. The electrodes used in each apparatus are made of the same material. However, the electrodes used in experiment 1 and 2 are made of different materials

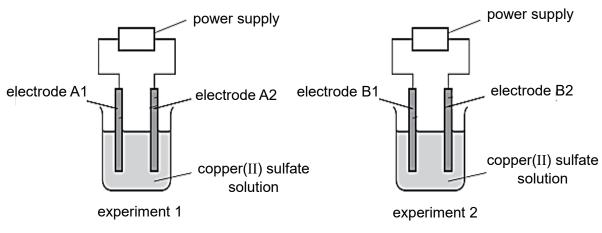


Fig. 7.1

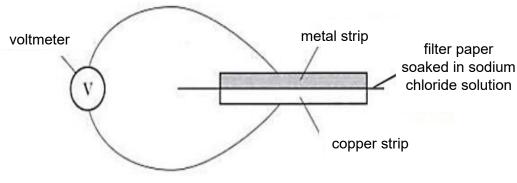
He recorded the observations in Table 7.1.

Table 7.1

experiment 1	experiment 2
mass of electrode A1 has increased	mass of electrode B1 has increased
mass of electrode A2 remains the same	mass of electrode B2 has decreased
effervescence observed at electrode A2	no effervescence observed at electrode B2

(a)	State which electrode is the cathode in o	each experiment.	
	experiment 1 :	experiment 2 :	[1]
(b)	Explain, with an appropriate equation, the	ne increase in mass at electrodes A1 and B1.	
			[2]
(c)	Write the half-equations of the reactions	s taking place at electrode A2.	
			[1]

 A8 Fig. 8.1 shows the apparatus used to investigate the relative reactivity of metals, **A**, **B**, **C** and **D**. The metal strips and copper were first cleaned with sandpaper. The metal strips were connected in turn with the copper strip and the voltage was recorded.



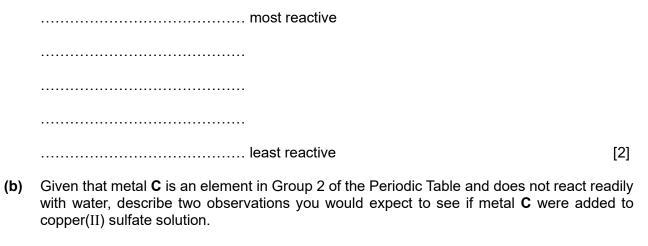

Fig. 8.1

Table 8.1 shows the results.

Table 8.1

metal strip	direction of electron flow	voltage / V
Α	from copper to metal A	0.78
В	from metal B to copper	2.22
С	from metal C to copper	1.39
D	from metal D to copper	0.28

(a) Use the results in Table 8.1 to deduce the order of reactivity of these four metals and copper.

(c) Predict and explain the voltage reading if the experiment with metal **A** and copper were repeated using a piece of filter paper soaked in ethanol instead of sodium chloride solution.

[Total: 5]

BLANK PAGE

Name:	()	Class: 4S	/ 4A

Preliminary Examination 2024 6092 CHEMISTRY Secondary Four

A9 In Singapore's residential homes, there are two types of supplied gas: piped gas or liquidfied petroleum gas.

Piped gas comprises hydrogen gas and is delivered straight to your kitchen through built-in pipes whenever you turn on the gas stove, whereas liquidfied petroleum gas comprises mainly propane and butane gas, and comes in gas cylinders.

(a) One mole of hydrogen gas gives out 247.5 kJ of energy when combusted. Write a chemical equation for the combustion of hydrogen gas and its enthalpy change of reaction in kJ/mol.

.....[2]

(b) The enthalpy change for the combustion of one mole of propane is – 2025 kJ/mol.

 $C_{3}H_{8}(g) + 5O_{2}(g) \rightarrow 3CO_{2}(g) + 4H_{2}O(g) \quad \Delta H = -2025 \text{ kJ/mol}$

(i) Explain, in terms of bond forming and bond breaking, why the combustion of propane is exothermic.

 (ii) Draw the energy profile diagram for the combustion of propane.

	energy /	
		progress of reaction
(c)		[2] advantage for using each type of gas.
		[1]
	liquidfied petr	oleum gas:
		[1]
		[Total: 8]

A10 Co-ordinate Bonds

In 1913, the Bohr model was introduced to explain the structure of an atom. Based on the Bohr model, an atom consists of a small, dense nucleus surrounded by electrons in fixed orbits.

The Bohr model also shows the formation of a simple covalent bond as the sharing of a pair of valence electrons from two atoms. A co-ordinate bond is a covalent bond in which both electrons come from the same atom.

An example of a co-ordinate bond can be found in the ammonium cation. Ammonium ion is formed when ammonia gas reacts with hydrogen chloride. During the reaction the H⁺ ion will attach to ammonia forming ammonium ion while the electron from hydrogen remains on the chlorine atom to form a chloride ion.

 $NH_3 + HCl \rightarrow NH_4Cl$

The co-ordinate bond is represented by an arrow in the structural formula, pointing from the atom that contributes the pair of electrons to the other atom. The structural formula of ammonium cation is as shown in Fig. 10.1.

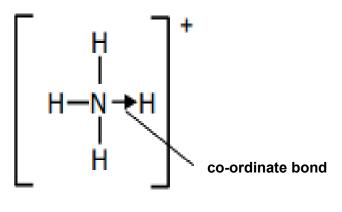


Fig. 10.1

Ligand Exchange Reactions

Ligands are ions or molecules that bind to a central metal atom to form a complex metal ion. The ligand shares one of its electron pair with the central metal atom, forming a co-ordinate bond.

In general, the cations involved in qualitative analysis are considered as complex metal ions. For example, in a beaker containing CuSO₄ solution, water acts as a ligand, sharing one electron pair with Cu²⁺ ion, forming a complex ion of copper(II) with molecular formula $[Cu(H_2O)_6]^{2+}$. The structural formula of $[Cu(H_2O)_6]^{2+}$ is as shown in Fig. 10.2.

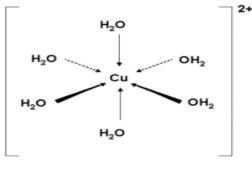


Fig. 10.2

When a small volume of aqueous sodium hydroxide is added to a solution of copper(II) ions, a complex, light blue precipitate of $Cu(H_2O)_4(OH)_2$ is formed. The molecular formula of the precipitate remains the same when excess aqueous sodium hydroxide is added.

When a small volume of aqueous ammonia is added to a solution of copper(II) ions, $Cu(H_2O)_4(OH)_2$ is formed, containing four H_2O ligands and two OH^- ligands. When aqueous ammonia is added in excess, four ammonia ligands replaces two OH^- ligands and two H_2O ligands.

(a) (i) Draw the dot-and-cross diagram of ammonium chloride, showing only the outer shell electrons.

[2]

(ii) Given that there is only one co-ordinate bond formed from the reaction between ammonia and boron trifluoride, draw the structural formula of the product, NH₃BF₃.

(b) (i) Describe the observations when aqueous ammonia is added to a solution of copper(II) ions until there are no further changes.

(ii) Suggest the molecular formula of the complex ion of copper(II) after adding excess aqueous ammonia.

.....[1]

(iii) Draw the structural formula of the complex ion of copper(II) after adding excess aqueous ammonia.

[2]

Suggest the molecular formula of the complex ion of iron(II) after adding excess (C) (i) aqueous ammonia.[1] (ii) With reference to the complex ions of both metals, explain the difference in observations when excess aqueous ammonia is added to copper(II) and iron(II) solutions in separate test tubes.[1] Green precipitate formed after adding aqueous sodium hydroxide to iron(II) solution. (iii) After a while, It was observed that the surface of the green precipitate in the test tube turns red-brown. Explain the observation.[2]

[Total: 12]

Section B

Answer one question from this section.

B11 Alkenes and alkynes are two homologous series of hydrocarbons. These hydrocarbons are sometimes obtained from the fractional distillation of crude oil. Table 11.1 shows the structural formulae of the first four members of alkynes.

alkyne	structural formula
ethyne	$H - C \equiv C - H$
propyne	H – C ≡ C – C – H H H
but-1-yne	H H H − C ≡ C − C − C − H I I H H
pent-1-yne	H H H I I I H − C ≡ C − C − C − C − H I I I H H H

- (a) Ethyne and propyne are unsaturated hydrocarbons. Both have the same general formula.
 - (i) Explain what is meant by 'ethyne and propyne are unsaturated hydrocarbon'.

(ii) Deduce the general formula of alkynes. [1]

(iii) Draw the full structural formula of the fifth member of the alkyne homologous series.

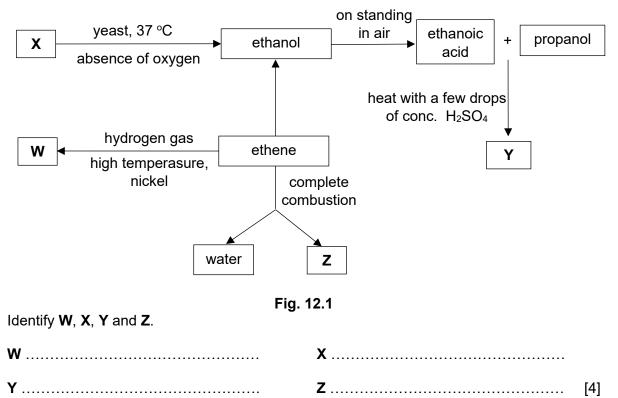
- (b) The chemical reactivity of alkynes is similar to alkenes.
 - (i) When propyne reacts with chlorine gas, the reaction is similar to reaction with aqueous bromine, a mixture of organic compounds are formed. One compound is able to decolourise aqueous bromine while the other does not. Draw two possible full structural formulae of these organic compounds.

[2]

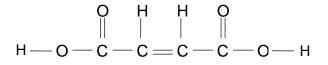
(ii) X is an isomer of pent-1-yne that can form a polymer. Part of this polymer structure is shown in Fig. 11.1.

$$\begin{array}{cccc} CH_3 & CH_3 & CH_3 & CH_3 \\ I & I & I \\ -C = C - C = C - C = C - C = C - \\ I & I \\ C_2H_5 & C_2H_5 & C_2H_5 & C_2H_5 \end{array}$$
Fig. 11.1

State the type of polymerisation that X can undergo and draw the full structural formula of this isomer.


.....[2]

(iii) One of the organic compounds formed in (b)(i) continues to react with chlorine gas and formed a mixture of organic molecules when exposed to ultra-violet light. Draw the full structural formulae of a product formed. Name the product you have drawn.


name of organic compound:[2]

[Total: 10]

B12 (a) Fig. 12.1 shows various reactions involving organic compounds, with ethene as the starting material.

(b) Fumaric acid is a white crystalline chemical compound which can be extracted from plants. When solid fumaric acid is dissolved in water, a colourless solution is formed. Fig. 12.2 shows the structural formula of fumaric acid.

(i) Describe what you would observe when aqueous fumaric acid is added to bromine solution and draw the **full structural formula** of the product formed.

.....[2]

(ii) Fumaric acid can undergo condensation polymerisation with ethane-1,2-diol to form polymer **M**. Fig. 12.3 shows the structural formula of ethane-1,2-diol.

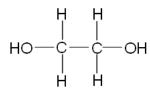


Fig. 12.3

Name the linkage present in **M**.

.....[1]

- (c) Fumaric acid can also undergo addition polymerisation to form polymer N. Polymer N is non-biodegradable and can possibly pose problem to our environment during disposal.
 - (i) Draw the structure of polymer **N**, showing two repeating units.

(ii)	Define <i>non-biodegradable</i> .												
	[1]												
(iii)	Suggest a possible problem that polymer ${f N}$ can pose to our environment during disposal.												
	[1]												
	[Total: 10]												

[1]

Elements
đ
ble
Ha
dic
erio
ď
The

	18	4 He Helium	6	Ne	1eon 20	18	A	argon 40	36	노	krypton 84	54	×	xenon 131	86	뚼	radon I	118	ő	oganesson I							
	17		б	ш	fluorine 19	17	õ	chlorine 35.5	35	Ъ	bromine 80	53	н	iodine 127	85	¥	astatine -	117	Ъ Т	tennessine I	7	2	Iutetium 175	103	Ŀ	lawrencium -]
	16		œ	0	oxygen 16	16	S	sulfur 32	34	s	selenium 79	52	Ъ	tellurium 128	8	Ъ	polonium I	116	2	livermorium –	2	٩ ۲	ytterbium 173	102	٩	nobelium I	
	15		2	z	nitrogen 14	15	٩	phosphorus 31	33	As	arsenic 75	51	sb	antimony 122	83	B	209 209	115	Мс	moscovium	69	ш	thulium 169	101	ΡW	mendelevium -	
	14		9	ပ	carbon 12	14	Si	silicon 28	32	9 0	gemanium 73	50	Sn	ii 19	82	Pb	bead 207	114	F١	flerovium I	68	ய்	erbium 167	100	Еm	fermium -	
	13		5	۵	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	Ľ	indium 115	81	Τl	thallium 204	113	Ч	nihonium I	67	운	holmium 165	66	Es	einsteinium -	
								12	30	Z	zinc 65	48	ខ	cadmium 112	8	ĘH	201	112	ວົ	copernicium 	99	à	dysprosium 163	86	പ്	californium -	
								1	29	S	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -	65	đ	terbium 159	97	¥	berkelium I	
d d								10	28	ī	nickel 59	46	ЪЧ	palladium 106	78	đ	platinum 195	110	ñ	darmstadtium –	64	B	gadolinium 157	96	с С	curium	
Group								0	27	ပိ	cobalt 59	45	ዲ	103	11	Ŀ	Iridium 192	109	Mt	meitnerium I	83	Ы	europium 152	95	Am	americium	
		1 H ^{hydrogen}						8	26	Ъе	iron 56	44	ßu	101	76	ő	osmium 190	108	Я	hassium I	62	Sn	samarium 150	94	Ъ	plutonium I	
						_		7	25	M	manganese 55	43		technetium		Re	rhenium 186			bohrium 	61	Бп	promethium –	93	ď	neptunium	
			umber	bol	mass			9	24	ບັ	chromium 52	42	мо	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -	8	PZ	neodymium 144	92	∍	uranium 238	
		Key	proton (atomic) number	atomic symbol	relative atomic mass			5	23	>	vanadium 51	41	q	niobium 93	73	Та	tantalum 181	105	å	dubnium I	59	ፈ	praseodymium 141	91	Ра	protactinium 231	i
			proton	ato	relati			4	22		titanium 48	I 1		zirconium 91	72	Ŧ	hafnium 178	104	ጟ	rutherfordium –	58	ဗီ	cerium 140	6	Ļ	thorium 232	
						_		e	21	လိ	scandium 45	39	≻	yttrium 89	57-71	lanthanoids		89-103	actinoids		57	La	lanthanum 139	89	Ac	actinium	
	2	9 Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg Mg						magnesium 24	20	ပ္ပ	calcium 40	38	ა	strontium 88	56	Ba	barium 137	88	Ra	radium I		lanthanoids			actinoids		
	-		ო	:=	lithium 7	11	Na	sodium 23	19	×	potassium 39	37	å	rubidium 85	55	ပိ	caesium 133	87	۱Ľ	francium –		lanthé			actir		

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$.