1 Express $\frac{3x^3 + 13x - 5}{\left(x^3 + 5x\right)}$ in partial fractions. [6]

2	(a)	The variables x and y are related in such a way that, when v^3 is plotted against v^2y ,
		a straight line is obtained which passes through (4, 6) and (6, 10).

Find the exact values of y for which
$$x - \sqrt{3}$$
. [4]

(b) The table shows experimental values of x and y.

X	1.5	2.0	2.5	3.0	3.5
y	35	79	176	394	890

It is known that x and y are related by an equation of the form $v = Up^{x}$, where U and p are constants.

- (i) On the grid on page 5, draw a straight line graph to illustrate this data. [2]
- (ii) Use your graph to estimate the value of U and of p. [4]

(iii) Estimate the value of x for which y = 500.

The diagram shows part of the curve where x = 1 meets the line x = 3 at S.

(i) Find the equation of normal *RS*.

(ii) Find the area bounded by the curve, the normal RS and the line x = 3.

[5]

- 4 (a) A curve has equation $x^2 + y^2 = 20$ and a line has equation y = 2x + m.
 - (i) Find the range of values of *m* for which the line intersects the curve at 2 distinct points. [4]

(ii) Give an example of a possible value for m for which the line does not intersect the curve.

[1]

- **(b)** The curve with equation $y = ax^2 + 2cx + c$, where a and c are constants, lies completely above the x-axis.
 - (i) Write down the conditions which must apply to a and c. [3]

(ii) Give an example of possible values for a and c which satisfy the conditions in part (i). [2]

5 (i) Express $\frac{6x}{3x-1}$ in the form $a + \frac{b}{3x-1}$, where a and b are constants and hence find

$$\int \frac{6x}{3x-1} \, \mathrm{d}x$$
 [4]

(ii) Given that
$$y = x \ln(3x-1)$$
, find an expression for $\frac{dy}{dx}$. [2]

(iii) Using the results from (i) and (ii), find $\int \ln(3x-1)dx$. [3]

The diagram shows two isosceles triangles AOB and COD. It is given that OA = OB = 6 cm, OC = OD = 4 cm, $\angle COB = 90^{\circ}$ and $\angle COD = x$.

The sum of the areas of $\triangle AOB$ and $\triangle COD$ is $A \text{ cm}^2$.

(i) Show that
$$A = 18\cos x + 8\sin x$$
 [2]

(ii) Find the value of R and α for which $A = R\cos(x - \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]

(iii) Given that x can vary, find the value of x if A = 16. Hence, find the area of triangle AOB. [4]

7 The equation of a curve is $y = e^{x^3 - 3x^2}$

(i) Find expressions for
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$.

[4]

[4]

(ii) Find the exact value of the coordinates of the stationary points.

(iii)	Determine the nature of each of the stationary points.	[4]

- 8 The points P(-2,-6), Q(2,-8) and R(6,0) lie on a circle.
 - (i) Show that PR is a diameter of the circle.

[3]

(ii) Find the equation of the circle.

[3]

[2]

(iii) Find the possible equations of tangent to the circle which is parallel to the x-axis.

(iv) Find the equation of the perpendicular bisector of *QR* and show that it passes through the centre of the circle. [3]

9 (a) Solve the equation $8(3^{-x}) - 3^x = 2$. [4]

$$\log_3\left(\frac{x^4}{y}\right) = 2 + 2\log_3 x + \log_9 y$$
(b) Given that , express y in terms of x. [4]

(c) Sketch the graph of $v = 3e^x$. By inserting on your sketch an additional graph, explain how a graphical solution of the equation $(3x-1)e^{-x} = 2$ may be obtained. [4]

Answer Key

1	1 - 2
1	$3 - \frac{1}{x} + \frac{x-2}{x^2+5}$
2a	$y = 3 \pm \sqrt{7}$
2b	ii) $p \approx 5.01$, $u \approx 2.99$ iii) $x = 3.15$
3	i) $8y = -x - 15$ (o.e.) ii) 10.8 units^2
4a	i) $-10 < m < 10$ ii) any $m < -10$ or $m > 10$
4b	i) $a > 0$, $c > 0$, c^2 -ac < 0 or $0 < c < a$ ii) accept any a, c such that $0 < c < a$
5	i) $2 + \frac{2}{3x-1}$ ii) $\frac{3x}{3x-1} + \ln(3x-1)$
	$x \ln(3x-1) - x - \frac{1}{3} \ln(3x-1) + c$
6	ii) $R = \sqrt{388}$ (o.e.) $\alpha = 24.0^{\circ}$ iii) $x = 59.6^{\circ}$, 9.10 cm^2
7	i) $\frac{dy}{dx} = (3x^2 - 6x)e^{x^3 - 3x^2}, \frac{d^2y}{dx^2} = [(6x - 6) + (3x^2 - 6x)^2]e^{x^3 - 3x^2} $ (o.e.)
	ii) $(0,1)$ and $(2,e^4)$
8	ii) $(x-2)^2 + (y+3)^2 = 25$ iii) $y = 2, y = -8$ iv) $y = -\frac{1}{2}x - 2$ (o.e.)
9a	0.631
9b	$y = \left(\frac{x}{3}\right)^{\frac{4}{3}}$ or $y = \sqrt[3]{\frac{x^4}{81}}$
9c	Insert line $y = \frac{9}{2}x - \frac{3}{2}$.
	The interesction of the line $y = \frac{9}{2}x - \frac{3}{2}$ and the curve $y = 3e^x$ gives the solution.
	Since there is no intersection, there is no solution to $(3x-1)e^{-x} = 2$.