
NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
1

 Name: __________________________ () Class: _________ Date: _________

Lesson 2: Using PyMongo

Instructional Objectives:

By the end of this task, you should be able to:

 Use PyMongo to connect to MongoDB server

 Create MongoDB databases using PyMongo

 Access MongoDB databases using PyMongo

 Obtain and modify MongoDB documents with PyMongo

 Use query operators in PyMongo

What is PyMongo?

MongoDB databases can be accessed using different programming languages like C,
Java and Python. To access MongoDB databases using Python, we use the Python
driver for MongoDB, PyMongo.

To use PyMongo, start your Python program by importing the pymongo package.

Try typing and running program 1 below. (Remember to start the MongoDB server
before you run the program.) The program connects to the MongoDB server and
outputs the databases currently in the MongoDB server.

Program 1: access.py

1
2
3
4
5
6

import pymongo
client = pymongo.MongoClient("127.0.0.1", 27017)
databases = client.database_names()
print("The databases in the MongoDB server are:")
print(databases)
client.close()

Line 2 connects to the local MongoDB database which is usually at port 27017. You
can see the port number when you start the MongoDB server. Line 6 closes the
connection to the server. The MongoDB server window should remain open while you
want to access the MongoDB database.

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
2

Line 3 of the code retrieves the names of the databases, stored as a Python list.

As an example, let’s create a database to store details on movie information.

Please note that MongoDB waits until you have inserted at least one document

before it actually creates the database and collection.

Program 2: insert.py

1
2
3
4
5

6

7
8
9

10

11

12

13

14
15
16
17

import pymongo
client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("movies")
coll.insert_one({"_id":1, "title":"Johnny Maths",
"genre":"comedy"})
coll.insert_one({"title":"Star Walls", "genre":"science
fiction"})
coll.insert_one({"title":"Detection"}) #no genre
list_to_add = []
list_to_add.append({"title":"Badman", "genre":"adventure",
"year":2015})
list_to_add.append({"title":"Averages", "genre":["science
fiction","adventure"], "year":2017})
list_to_add.append({"title":"Octopus Man",
"genre":"adventure", "year":2017})
list_to_add.append({"title":"Fantastic Bees",
"genre":"adventure", "year":2018})
list_to_add.append({"title":"Underground", "genre":"horror",
"year":2014})
coll.insert_many(list_to_add)
c = db.collection_names("entertainment")
print ("Collections in entertainment database: ",c)
client.close()

Program 2 demonstrates two ways of inserting documents into collection

entertainment. To insert one document, you can use the insert_one() method

shown in lines 5 and 6. Notice that all not fields are required for insertion, as shown

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
3

in lines 5 to 7. To insert multiple documents, you can use the insert_many()

method to insert a list of documents as shown in line 13.

MongoDB will assign a unique _id to each document. You can customise the _id

by stating it during the insertion process, as shown on line 5. However, this means

that you cannot run program 2 again until you remove this document, otherwise the

program will produce an error. You can try to run the program again with line 5

commented out. Duplicates of the other documents will be created.

Line 15 gathered the list of collections while line 16 prints it as a list.

1. Write a Python program to ask for one movie title and the year of movie, then

insert the document into the movie collection. Assume no genre is given.

Q1 Program: q1.py

import pymongo
title = input("Enter movie title")
year = input("Enter year of movie")
client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("movie")
coll.insert_one({"title":title, "year":year})
client.close()

Go further! Can you extend the program to include genres (where movies can have

none or multiple genres)?

Of course, for large amount of data, it is more efficient to import from a file.

2. The program below reads from a delimited text file and insert the documents
into the database. Parts of the input file and the program are given below.
Fill in the blanks.

Input File: input.txt

Amanda,45
Bala,28
Charlie,33
Devi,29
...

Q2 Program: q2.py

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
4

import pymongo, csv

client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("users")

with open('input.txt') as csv_file:
 csv_reader = csv.reader(csv_file, delimiter=',')
 for row in csv_reader:
 coll.insert_one({"name":row[0], "age":row[1]})
client.close()

If the file is in JSON (JavaScript Object Notation), the data can also be imported

using the load() function. A sample JSON file and program is shown below.

JSON file: input.json

[
 {
 "name": "Amanda",
 "age": "45"
 },
 {
 "name": "Bala",
 "age": "28"
 },
 {
 "name": "Charlie",
 "age": "33"
 },
 {
 "name": "Devi",
 "age": "29"
 }
]

Program 3: loadjson.py

1
2
3
4
5
6

import pymongo, json
client = pymongo.MongoClient("127.0.0.1", 27017)
with open('data.json') as file:
 data = json.load(file)
client['entertainment']['moreusers'].insert_many(data)
client.close()

Let’s now try to get the data from the database.

Program 4: view.py

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19
20
21
22

import pymongo
client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("movies")
result = coll.find()
print("All documents in movie collection:")
for document in result:
 print(document)
print("Number of items in movie collection:", coll.count())

result = coll.find({'genre': 'adventure'})
print("All movies with adventure genre:")
for document in result:
 print(document)

query2 = {'genre': 'adventure', 'year': {'$gt': 2016}}
result = coll.find(query2)
print("All titles of movies with adventure genre after
2016:")
for document in result:
 print(" - " + document.get('title'))
print("There are",result.count(),"movies in the list above.")
client.close()

The method find() in line 5 returns a Cursor of all the documents in the movie

collection. The results can be printed with a loop. The count() method gives the

number of documents in the movie collection.

Line 11 onwards demonstrates the searching of specific documents in MongoDB.

The query can be formed directly as shown in line 11, or built with variables (see

lines 16 and 17). Each document is just a Python dict, so you can use the usual

built-in methods for dict. For example, line 20 uses the get() method to retrieve

the value of title. This allows you to extract the value for a particular field in the

document.

Line 16 of the code creates the query to find the documents with adventure genre

and year greater than 2016. It can be rewritten using the $and operator:

query2 = {'$and':[{'genre': 'adventure'}, {'year': {'$gt': 2016}}]}

Line 21 shows how to obtain the number of documents in the search results. Using

the count() method, it gives the number of titles of movies with adventure genre

after 2016.

The following is a list of commonly used query operators.

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
6

$eq Equals to
$gt Greater than
$gte Greater than or equal to
$lt Less than
$lte Less than or equal to
$ne Not equal to
$in In a specified list

$nin Not in a specified list

$or Logical OR
$and Logical AND
$not Logical NOT
$exists Matches documents which has the named field

Program 5 demonstrates the use of some of these query operators.

Program 5: view2.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import pymongo
client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("movies")

result = coll.find()
print("All documents in movie collection:")
for document in result:
 print(document)
print("Number of items in movie collection:", coll.count())

result = coll.find({'genre':{'$in':['adventure', 'comedy']}})
print("All movies with adventure or comedy genre inside:")
for document in result:
 print(document)

query2 = {'genre': {'$exists':False}}
result = coll.find(query2)
print("All movies without genre:")
for document in result:
 print(" - " + document.get('title'))

result = coll.find_one({'year':{'$eq':2017}})
print("One movie that was released in 2017")
print(result)
client.close()

Line 23 uses find_one() which returns one document that matches the condition.

Run the program. Modify the program with different query operators and options.

3. Modify lines 12 and 13 to find all movies without adventure and comedy genres.

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
7

result = coll.find({'genre':{ '$nin':['adventure', 'comedy']}})

print("All movies without adventure and comedy genres:")

 ………………………………………………………………………………………….

4. Modify lines 17 to 21 such that for all movies with year, print out the movie title
and how many years ago the movie was released.
query2 = {'year': {'$exists':True}}
result = coll.find(query2)
print("All movies with year given:")
for document in result:
 print(" - Title:", document.get('title'), ", No. of year(s)

since release:",2018-document.get('year'))
 ………………………………………………………………………………………….

5. Modify lines 23 to 25 to print out all movies released before 2017.

result = coll.find({'year':{'$lt':2017}})
print("All movies that were released before 2017")
for document in result:
 print(document)

 ………………………………………………………………………………………….

To modify the content in the database, use the update_one() method to modify the

first document that matches the query, or the update_many() method to modify all

documents that matches the query. Program 6 demonstrates the update process. Line

12 uses $set to set all the year values greater than 2016 to be 2015. There is also

the $unset operator to remove given fields (see line 28). Note that even though

$unset operator removes the given fields, there is still a requirement to have a second

argument, thus 0 is placed even though it won’t be updated.

Program 6: update.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

import pymongo
client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("movies")

result = coll.find()
print("All documents in movies collection:")
for document in result:
 print(document)

search = {'year':{'$gt':2016}}
update = {'$set':{'year':2015}}
coll.update_one(search, update)

result = coll.find()
print("All documents in movies collection after update one:")
for document in result:

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
8

18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36

 print(document)

coll.update_many(search, update)

result = coll.find()
print("All documents in movies collection after updating
all:")
for document in result:
 print(document)

search = {'year':{'$eq':2018}}
update = {'$unset':{'year':0}}
coll.update_many(search, update)

result = coll.find()
print("All documents in movies collection after unset:")
for document in result:
 print(document)

client.close()

6. Modify lines 11 and 12 to add comedy genre to all movies that currently have

no genres.
search = {'genre':{'$exists':False}}
update = {'$set':{'genre':'Comedy'}}

 ………………………………………………………………………………………….

7. Modify lines 27 and 28 to remove the genre field to all movies that currently
have adventure as its genre or one of its genre.
search = {'genre':{'$in':'adventure'}}
update = {'$unset':{'genre':0}}

 ………………………………………………………………………………………….

To delete a collection, you can use the delete_one() method to delete the first

document that matches the given condition, or delete_many() method to delete all

the documents that match the condition. This is demonstrated by program 7 below.

Program 7: delete.py

1
2
3
4
5
6
7
8
9

import pymongo
client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("movies")

result = coll.find()
print("All documents in movies collection:")
for document in result:
 print(document)

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
9

10
11
12
13
14

15
16
17
18
19
20
21

22
23
24
25

coll.delete_one({'year':2015})

result = coll.find()
print("All documents in movies collection after deleting
one:")
for document in result:
 print(document)

coll.delete_many({'year':2015})

result = coll.find()
print("All documents in movies collection after deleting
all:")
for document in result:
 print(document)

client.close()

8. Modify line 18 to delete all movies with adventure as its genre or one of its

genre.
coll.delete_many({'genre':{'$eq':'adventure'}})
coll.delete_many({'genre':'adventure'}) is correct too.

 ………………………………………………………………………………………….

To clear the collection, you can write a program similar to program 8 below.

Program 8: remove.py

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19

import pymongo
client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("tv")
coll.insert_one({"title":"X Man", "genre":"science fiction"})
coll.insert_one({"title":"Fresh from the boat",
"genre":"comedy"})
coll.insert_one({"title":"", "genre":"comedy"})
coll.insert_one({"genre":"comedy"})
result = coll.find()
print("All documents in tv collection:")
for document in result:
 print(document)
print("Number of items in tv collection:", coll.count())
db.drop_collection("tv")
result = coll.find()
print("After tv collection is dropped:")
for document in result:
 print(document)
print("Number of items in tv collection:", coll.count())

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
10

20 client.close()

To remove the entire entertainment database, you can use the following

statement. That will remove all the collections and the documents within it.
client.drop_database("entertainment")

9. You are tasked to create and store concert information on a NoSQL database,

accessing them through a Python program.
Create a program to insert concert information (e.g. concert title, date, time,
venue, price of tickets), search for information on a concert using concert title
and delete the entire concert by concert title (assuming that all concerts have
unique titles). You should have a menu to allow the user to select the option,
and an option to end the program.

Q9 Program: q9.py

possible solution given below
import pymongo

def menu_options():
 print("------------Menu------------")
 print("1: Add a concert")
 print("2: Search for concert")
 print("3: Display all concerts")
 print("4: Delete concert")
 print("5: Exit program")
 try:
 option = int(input("Enter program option (1, 2, 3, 4
or 5):"))
 return option
 except ValueError:
 print("Please enter a number.")
 except:
 print("Error occurred")
 return -1

client = pymongo.MongoClient("127.0.0.1", 27017)
db = client.get_database("entertainment")
coll = db.get_collection("concerts")
menuoption = -1
while (menuoption != 5):
 if (menuoption == 1):
 #add
 title = input("Enter concert title:")
 date = input("Enter concert date:")
 time = input("Enter concert time:")
 venue = input("Enter concert venue:")
 price = input("Enter the price of tickets (e.g. $200,
$100, $50)")

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
11

 try:
 coll.insert_one({"title":title, "date":date,
"time":time, "venue":venue, "price": price})
 print("Concert entry entered")
 except:
 print("Error occurred while trying to insert.")
 elif (menuoption == 2):
 #search
 title = input("Enter concert title for searching:")
 try:
 result = coll.find({'title':title})
 print("Search result")
 for document in result:
 print(document)
 except:
 print("Error occurred while trying to search.")
 elif (menuoption == 3):
 #display all
 result = coll.find()
 print("List of all concerts with given title")
 for document in result:
 print(document)
 elif (menuoption == 4):
 #delete
 to_delete = input("Enter title of concert to delete")
 try:
 coll.delete_one({'title':title})
 print("Deleted first concert with
title",to_delete)
 except:
 print("Error occurred when deleting.")
 else:
 #menuoption is -1 or invalid option
 print("Please select a valid program option. (1, 2, 3,
4 or 5)")
 menuoption = menu_options()
end program
client.close()
print("End of program")

References

Content Link

NoSQL
Databases

https://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/

https://www.thegeekstuff.com/2014/01/sql-vs-nosql-db/

NoSQL Databases

CPDD Computer Education Unit Version: Feb 2019
12

https://www.3pillarglobal.com/insights/exploring-the-different-types-
of-nosql-databases

https://www.mongodb.com/scale/types-of-nosql-databases

MongoDB/Py
Mongo

https://www.mongodb.com/what-is-mongodb

http://api.mongodb.com/python/current/tutorial.html

https://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases
https://www.3pillarglobal.com/insights/exploring-the-different-types-of-nosql-databases
https://www.mongodb.com/scale/types-of-nosql-databases
https://www.mongodb.com/what-is-mongodb

