Name:	Index No.:	Class:

PRESBYTERIAN HIGH SCHOOL

ADDITIONAL MATHEMATICS Paper 2

20 August 2024

Tuesday

2 hours 15 min

4049/02

PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL
PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL
PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL
PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL
PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL	PRESBYTERIAN HIGH SCHOOL

2024 SECONDARY FOUR EXPRESS / FIVE NORMAL (ACADEMIC) PRELIMINARY EXAMINATIONS

MARK SCHEME

Q1 – 8 Mr Gregory Quek Q9 – 10 Mr Tan Lip Sing 1 (a) Write down, and simplify, the first three terms in the expansion of $\left(3 - \frac{2}{x}\right)^5$ in descending powers of x.

ſ

$$\left(3 - \frac{2}{x}\right)^5 = 3^5 + 5\left(3\right)^4 \left(-\frac{2}{x}\right) + \binom{5}{2}\left(3\right)^3 \left(-\frac{2}{x}\right)^2 + \dots$$

$$\left(3 - \frac{2}{x}\right)^5 = 243 - \frac{810}{x} + \frac{1080}{x^2} + \dots$$

(B1: Two correct terms)
(B1: Two correct terms)

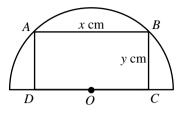
(b) Given that there is no term independent of x in the expansion of $(5 + ax^2)(3 - \frac{2}{x})^5$, hence find the value of the constant a. [3]

$$(5+ax^{2})\left(3-\frac{2}{x}\right)^{5} = (5+ax^{2})\left(243-\frac{810}{x}+\frac{1080}{x^{2}}+...\right)$$

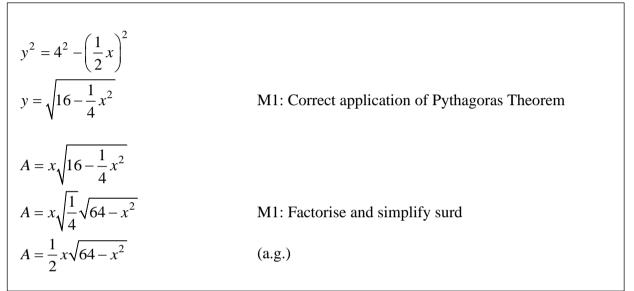
Term independent of $x = (5)(243) + (ax^{2})\left(\frac{1080}{x^{2}}\right)$ M1: Derive terms indep. of x
 $\Rightarrow 1215+1080a = 0$
 $\Rightarrow a = -\frac{1215}{1080} = -1.125$ M1: Equate terms to zero
A1: Accept $-1\frac{1}{8}$ or $-\frac{9}{8}$

[2]

2 In the figure, *ABCD* is a rectangle inscribed within a semicircle of radius 4 cm and centre *O*. It is given that AB = x cm and BC = y cm.



(a) Show that the area of the rectangle, A cm, is given by $A = \frac{1}{2}x\sqrt{64 - x^2}$. [2]



(b) Find the exact value of x for which A has a stationary value. Give your answer in the form $k\sqrt{2}$, where k is an integer. [4]

$$\frac{dA}{dx} = \frac{1}{2}x \cdot \left[\frac{1}{2}(64 - x^2)^{-\frac{1}{2}} \cdot (-2x)\right] + \sqrt{64 - x^2} \cdot \left(\frac{1}{2}\right) \qquad \text{M1, M1: Product rule}$$

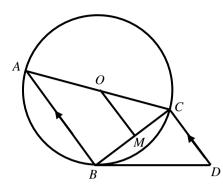
$$\frac{dA}{dx} = -\frac{1}{2}x^2(64 - x^2)^{-\frac{1}{2}} + \frac{1}{2}(64 - x^2)^{\frac{1}{2}}$$

$$\frac{dA}{dx} = \frac{1}{2}(64 - x^2)^{-\frac{1}{2}}\left[-x^2 + (64 - x^2)\right] = \frac{32 - x^2}{\sqrt{64 - x^2}}$$
For stationary value, $\frac{dA}{dx} = \frac{32 - x^2}{\sqrt{64 - x^2}} = 0$

$$32 - x^2 = 0$$

$$x = \sqrt{32} = 4\sqrt{2}$$
A1

3 The diagram shows a triangle *ABC* is inscribed in the circle with centre *O*. *BD* is a tangent to the circle at *B* and *AB* is parallel to *CD*. Point *M* is the midpoint of *BC*.



((a) Prove that triangles <i>ABC</i> and <i>BCD</i> are similar.		[3]
	$\angle ABC = \angle BCD \ (alt. \ \angle s, \ AB//CD)$ $\angle BAC = \angle CBD \ (alternate \ segment \ theorem)$	M1	
	Triangles ABC and BCD are similar. (AA similarity)	A1	

(**b**) Prove that *ABMO* is a trapezium.

Since O and M are the midpoints of AC and BC respectively,		
OM //AB (midpoint theorem)	M1	
ABMO is a trapezium. (one pair of parallel sides)	A1	

(c) Prove that
$$OM = \frac{BC^2}{2CD}$$
.

[3]

$\frac{AB}{BC} = \frac{BC}{CD} (corr. sides of similar \Delta s)$	M1	
Since $AB = 2OM$ (midpoint theorem) 2OM BC	M1	
$\Rightarrow \frac{BC}{BC} = \frac{BC}{CD}$ $\therefore OM = \frac{BC^2}{2CD}$	A1	

*Penalise 1m per question for any missing or incorrect reasons.

[2]

- 4 Milk is poured into an empty cup and heated. The temperature, $T_m \,^\circ C$, of the milk in the cup, t minutes after it is heated, is modelled by the formula, $T_m = 5(2)^t + 20$.
 - (a) State the initial temperature of the milk. [1]

Initial temperature of milk =
$$5(2)^0 + 20 = 25^{\circ}C$$
 B1

Coffee is poured into another empty cup. The temperature, $T_c \,^\circ C$, of the coffee in the cup, t minutes after it is poured, is modelled by the formula, $T_c = 60(2)^{-t} + 25$.

(b) Find the time taken for the temperature of the coffee to drop to 35°C. [3]

$60(2)^{-t} + 25 = 35$	
$(2)^{-t} = \frac{35 - 25}{60} = \frac{1}{6}$	M1: Isolate $(2)^{-t}$
$\lg \left(2\right)^{-t} = \lg \left(\frac{1}{6}\right)$	M1: Take lg on both sides
$-t\lg\left(2\right) = \lg\left(\frac{1}{6}\right)$	
$t = -\lg\left(\frac{1}{6}\right) \div \lg\left(2\right) = 2.5849$	
$t \approx 2.58 \min (3sf)$	A1

(c) Find the time taken for the milk and the coffee to reach the same temperature. [4]

 $5(2)^{t} + 20 = 60(2)^{-t} + 25$ M1: Equate T_{m} to T_{c} $5(2)^{2t} + 20(2)^{t} = 60 + 25(2)^{t}$ M1: Multiply 2^{t} throughout / obtain quad. eqn. $5(2)^{2t} - 5(2)^{t} - 60 = 0$ ($2)^{2t} - (2)^{t} - 12 = 0$ Let $u = (2)^{t}$, $u^{2} - u - 12 = 0$ Let $u = (2)^{t}$, $u^{2} - u - 12 = 0$ M1: Solve quadratic equation u = 4 or u = -3 (rejected)($2)^{t} = 4$ $t = 2 \min$ A1

- 5 It is given that $f(x) = 2x^3 x^2y 13xy^2 6y^3$.
 - (a) Show that x-3y is a factor of f(x).

 $f(3y) = 2(3y)^{3} - (3y)^{2} y - 13(3y)y^{2} - 6$ $f(3y) = 54y^{3} - 9y^{3} - 39y^{3} - 6y^{3} = 0$ Since f(3y) = 0, by Factor Theorem, x - 3y is a factor of f(x). AG1

(b) If y = 1, find an expression in fully factorised form for f(x).

[3]

[2]

Let $f(x) = 2x^3 - x^2 - 13x - 6$ = $(x-3)[2x^2 + bx + 2]$ Comparing x^2 term: -1 = b + (-3)(2) b = 5	M1: Comparing coefficient (or long division)
$\Rightarrow f(x) = (x-3) \left[2x^2 + 5x + 2 \right]$	A1
$\Rightarrow f(x) = (x-3)(2x+1)(x+2)$	A1

(c) Hence solve the equation $2e^{6z} - e^{4z} - 13e^{2z} - 6 = 0$ and show that the solution may be written in the form $\ln \sqrt{p}$, where p is an integer. [3]

Let
$$x = e^{2z}$$
,
we get $2e^{6z} - e^{4z} - 13e^{2z} - 6 = 0$
 $\Rightarrow (e^{2z} - 3)(2e^{2z} + 1)(e^{2z} + 2) = 0$ M1: Sub. $x = e^{2z}$ into (b)
 $\Rightarrow e^{2z} = 3$ or $2e^{2z} = -1(rejected)$ or $e^{2z} = -2(rejected)$ A1: Seen $e^{2z} = 3$
 $\ln e^{2z} = \ln 3$
 $2z = \ln 3$
 $z = \frac{1}{2}\ln 3$
 $\therefore z = \ln \sqrt{3}$ A1

$\tan \theta = 2 \operatorname{cosec} \theta$ $\frac{\sin \theta}{\cos \theta} = \frac{2}{\sin \theta}$ $\sin^2 \theta = 2 \cos \theta$	M1: Seen either one
$1 - \cos^2 \theta = 2\cos \theta$ $\cos^2 \theta + 2\cos \theta - 1 = 0$	M1: Apply Pythagorean identity
$\cos \theta + 2\cos \theta - 1 = 0$	AUI

(b) Using part (a), find the exact value of $\cos \theta$ in simplest form, given that $0^{\circ} < \theta < 90^{\circ}$. [3]

$$\cos^{2} \theta + 2\cos \theta - 1 = 0$$

$$\cos \theta = \frac{-2 \pm \sqrt{2^{2} - 4(1)(-1)}}{2(1)}$$
M1: Apply quadratic formula
$$\cos \theta = \frac{-2 \pm \sqrt{8}}{2}$$

$$\cos \theta = -1 \pm \sqrt{2}$$
M1: Attempt to simplify
Since $0^{\circ} < \theta < 90^{\circ}$, $\cos \theta$ must be positive.
$$\therefore \cos \theta = -1 + \sqrt{2}$$
A1

(c) Hence find the value of $\sec^2 \theta$ in the form $a + b\sqrt{2}$, where a and b are integers. [5]

$$\sec^{2} \theta = \frac{1}{\cos^{2} \theta}$$

$$\sec^{2} \theta = \frac{1}{\left(-1 + \sqrt{2}\right)^{2}}$$

$$\sec^{2} \theta = \frac{1}{\left(\sqrt{2}\right)^{2} - 2\left(\sqrt{2}\right)(1) + 1^{2}}$$
M1: Expand the denominator
$$\sec^{2} \theta = \frac{1}{3 - 2\sqrt{2}} \times \frac{3 + 2\sqrt{2}}{3 + 2\sqrt{2}}$$
M1: Rationalise the denominator
$$\sec^{2} \theta = \frac{3 + 2\sqrt{2}}{3^{2} - \left(2\sqrt{2}\right)^{2}}$$
M1: Simplify the denominator
$$\sec^{2} \theta = 3 + 2\sqrt{2}$$
A1

7 (a) Prove that $(\sin 2x)(\cot x) - 1 = \cos 2x$.

$$LHS = (\sin 2x)(\cot x) - 1$$

= $(2\sin x \cos x)\left(\frac{\cos x}{\sin x}\right) - 1$ M1: Seen 2sinxcosx
= $2\cos^2 x - 1$ M1
= $\cos 2x = RHS$ (a.g)

(b) Given that $y = (\sin 2x)(\cot x) - 1$, hence show that $\frac{d^2 y}{dx^2} + 3\left(\frac{dy}{dx}\right) + 2y + 9\sin 2x = 0$ may be written in the form $\tan 2x = k$, where k is a constant to be found.

$$y = (\sin 2x)(\cot x) - 1 = \cos 2x$$

$$\frac{dy}{dx} = -2\sin 2x$$
B1

$$\frac{d^2 y}{dx^2} = -4\cos 2x$$
B1

$$\frac{d^2 y}{dx^2} + 3\left(\frac{dy}{dx}\right) + 2y + 9\sin 2x = 0$$

$$-4\cos 2x + 3(-2\sin 2x) + 2\cos 2x + 9\sin 2x = 0$$
M1: Correct substitution

$$3\sin 2x = 2\cos 2x$$

$$\tan 2x = \frac{2}{3}$$

$$\therefore k = \frac{2}{3}$$
A1

(c) Solve $\tan 2x = -\sqrt{3}$ for $0 \le x \le 2\pi$, giving your answers in terms of π .

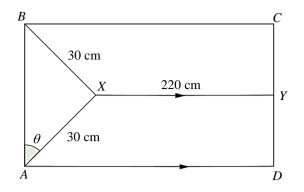
 $\alpha = \tan^{-1} \left(\sqrt{3} \right) = \frac{\pi}{3}$ M1: Find reference angle $2x = \pi - \frac{\pi}{3}, 2\pi - \frac{\pi}{3}, 3\pi - \frac{\pi}{3}, 4\pi - \frac{\pi}{3}$ M1: Find angles in 2nd and 4th quadrants $2x = \frac{2\pi}{3}, \frac{5\pi}{3}, \frac{8\pi}{3}, \frac{11\pi}{3}$ $x = \frac{\pi}{3}, \frac{5\pi}{6}, \frac{4\pi}{3}, \frac{11\pi}{6}$ A2: One mark for each correct pair of angles

*Penalise 1m for answers not in terms of π .

8

[4]

[4]



The diagram shows a rectangular flag *ABCD*. *XAB* is a triangle with AX = BX = 30 cm and angle $XAB = \theta$ for $0 < \theta < 90^\circ$. *XY* is parallel to *AD* and *XY* = 220 cm.

(a) Express the area of triangle *XAB* in the form $q \sin 2\theta$, where q is an integer. [2]

Area of triangle $XAB = \frac{1}{2}(30)(30)\sin(180^\circ - 2\theta)$	M1: Apply formula ¹ /2bcsinA
Area of triangle $XAB = 450 \sin 2\theta$	A1

(b) Given that θ can vary, find the maximum possible area of triangle *XAB* and the value of θ at which this occurs.

This occurs when $\sin 2\theta = 1$,	
Maximum area of triangle $XAB = 450 \text{ cm}^2$	B1: F.T.
Value of $\theta = 45^{\circ}$	B1

[2]

(c) Show that the perimeter, *P* cm, of the rectangular flag *ABCD* can be expressed in the form $a\sin\theta + b\cos\theta + c$, where *a*, *b* and *c* are constants to be found. [3]

 $AD = 30 \sin \theta + 220$ $AB = 2 \times 30 \cos \theta$ Perimeter = 2[30 \sin \theta + 220] + 2[2 \times 30 \cos \theta] $P = 60 \sin \theta + 120 \cos \theta + 440$ M1: Either AD or AB M1: Attempt to find perimeter A1

(d) By expressing P in the form $R\sin(\theta + \alpha) + c$, where R > 0 and $0 < \alpha < 90^\circ$, explain

$$R = \sqrt{60^{2} + 120^{2}} = \sqrt{18000} = 60\sqrt{5}$$

M1: Seen $R = \sqrt{a^{2} + b^{2}}$
$$\alpha = \tan^{-1} \left(\frac{120}{60}\right) = 63.434^{\circ}$$

M1: Seen $\alpha = \tan^{-1} \frac{b}{a}$
$$P = 60\sqrt{5} \sin(\theta + 63.434^{\circ}) + 440$$

Method 1

Let
$$60\sqrt{5}\sin(\theta + 63.434^\circ) + 440 = 550$$

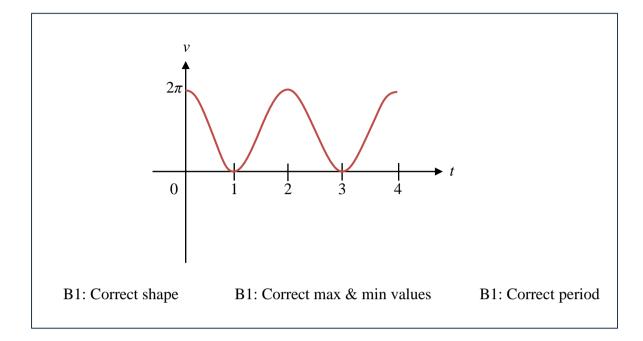
 $\sin(\theta + 63.434^\circ) = \frac{550 - 440}{60\sqrt{5}}$
Reference angle $= \sin^{-1}\left(\frac{11}{6\sqrt{5}}\right) = 55.0739$ M1: Find reference angle
 $\theta + 63.434^\circ = 55.0739^\circ \text{ or } 180^\circ - 55.0739^\circ$ M1: Find θ in 1st & 2nd quad
 $\theta = -8.3601^\circ (\text{rejected}) \text{ or } 61.4921^\circ$
Yes, it is possible to have a flag with perimeter 550 cm when $\theta \approx 61.5^\circ (1\text{dp})$ A1

Method 2

<i>Maximum</i> $P = 60\sqrt{5} + 440 = 574$ cm	M1
When $\theta = 90^{\circ}$, Minimum $P = 60\sqrt{5}\sin(90^{\circ} + 63.434^{\circ}) + 440 = 500 \text{ cm}$	M1
Since $500 < P \le 574$, it is possible to have a flag with perimeter 550 cm.	A1

9 A particle moves in a straight line so that, *t* seconds after passing a fixed point *O*, its velocity, *v* metres per second, is given by $v = \pi \cos(\pi t) + \pi$.

10



(a) Sketch the velocity-time graph of the particle for $0 \le t \le 4$.

(b) Determine how many times the particle is at instantaneous rest in the first 10 seconds. [1]

From the graph, the particle is at instantaneous rest when v = 0 at every odd second. Therefore, there are **<u>5 times</u>** in the first 10 seconds. B1

(c) Explain why the particle will never return to the origin *O*.

[2]

[3]

Since $v \ge 0$, the velocity of the particle is never negative ,	B1
hence the particle does not change its direction of motion .	B 1
Therefore, the particle will never return to the origin O.	(a.g)

(d) Find an expression, in terms of *t*, for the displacement of the particle.

$$s = \int \pi \cos(\pi t) + \pi \, dt$$

$$s = \frac{\pi \sin(\pi t)}{\pi} + \pi t + c$$
M1: Apply integration
When $t = 0, s = 0$, thus $c = 0$.

(e) Calculate the average speed of the particle in the first 4 seconds.

When t = 0, s = 0.M1: Find displacement at t = 4When $t = 4, s = sin(4\pi) + 4\pi = 4\pi$ M1: Find displacement at t = 4Average speed = $\frac{4\pi}{4}$ M1: Find average speedAverage speed = π m/sA1

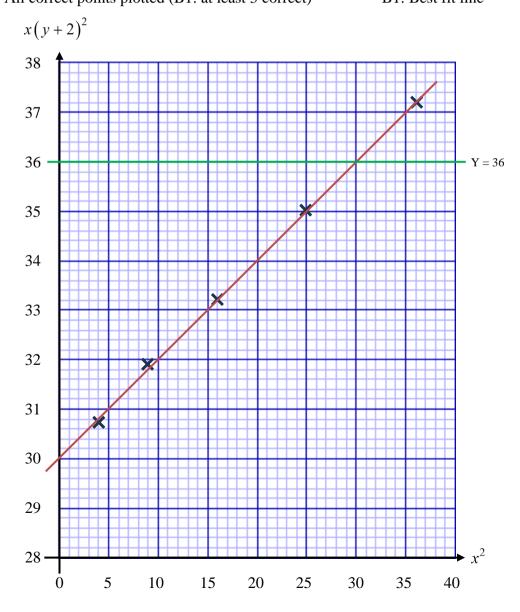
[3]

10 It is known that x and y are related by the equation $y = \sqrt{Ax + \frac{B}{x}} - 2$, where A and B are positive constants. The following table shows the values of the variables, x and y.

x	2	3	4	5	6
у	1.92	1.26	0.881	0.646	0.490

<mark>x²</mark>	<mark>4</mark>	<mark>9</mark>	<mark>16</mark>	<mark>25</mark>	<mark>36</mark>
$\frac{x(y+2)^2}{2}$	<mark>30.7</mark>	<mark>31.9</mark>	<mark>33.2</mark>	<mark>35.0</mark>	<mark>37.2</mark>

(a) Plot $x(y+2)^2$ against x^2 and draw a straight line graph to illustrate the information. [3] B2: All correct points plotted (B1: at least 3 correct) B1: Best fit line



(b) Express the equation $y = \sqrt{Ax + \frac{B}{x}} - 2$ in a form that will yield the straight line graph [2]

$$y = \sqrt{Ax + \frac{B}{x}} - 2$$

$$y + 2 = \sqrt{Ax + \frac{B}{x}}$$

$$(y + 2)^{2} = Ax + \frac{B}{x}$$

$$x(y + 2)^{2} = Ax^{2} + B$$

M1: Taking square on both sides

$$A1$$

(c) Use your graph to estimate the value of *A* and of *B*.

$$A = gradient = \frac{37.2 - 33.2}{36 - 16} = 0.2$$
B1: Accept +/- 0.01 $B = Y - \text{intercept} = 30$ B1: Accept +/- 0.5

(d) Explain why the graph
$$y = \sqrt{Ax + \frac{B}{x}} - 2$$
 is undefined for $x \le 0$. [2]

When
$$x = 0$$
, $\frac{B}{x}$ results in **division by zero error**.
When $x < 0$, since $A > 0$ and $B > 0$, $Ax + \frac{B}{x} < 0$, hence $\sqrt{Ax + \frac{B}{x}}$ has **no real roots**.
Hence, $y = \sqrt{Ax + \frac{B}{x}} - 2$ is undefined for $x \le 0$.
(a.g.)

By drawing a suitable line on your graph, estimate the value of x for which $y + 2 = \frac{6}{\sqrt{x}}$. **(e)** Give your answer to 3 significant figures. [2]

$$y+2 = \frac{6}{\sqrt{x}}$$

$$(y+2)^2 = \frac{36}{x}$$
B1: Draw Y = 36 on the same axes
$$x(y+2)^2 = 36$$
From the graph, when $x(y+2)^2 = 36$, $x^2 = 30$

$$\therefore x = \sqrt{30} = 5.4772 \approx 5.48 (3sf)$$
B1: Accept +/- 0.1

[2]