2014 Year 6 Prelim Examination Paper 2

Suggested Solution

On	Suggested Solution
1(i)	Let $P(n)$ be the proposition:
	$\sum_{r=1}^{n} \frac{r^2(r+1)+1}{r(r+1)} = \frac{n(n+1)^2 - 2}{2(n+1)} + 1, n \in \square^+.$
	LHS of P(1) = $\frac{3}{(1)(2)} = \frac{3}{2}$
	RHS of P(1) = $\frac{1(1+1)^2 - 2}{2(1+1)} + 1 = \frac{3}{2} = LHS$ of P(1)
	Hence P(1) is true.
	Assume $P(k)$ is true for some $k \in \square^+$, i.e.
	$\sum_{r=1}^{k} \frac{r^2(r+1)+1}{r(r+1)} = \frac{k(k+1)^2 - 2}{2(k+1)} + 1$
	To show $P(k + 1)$ is true, i.e.
	$\sum_{k=1}^{k+1} r^2 (r+1) + 1 (k+1)(k+2)^2 - 2$
	$\sum_{r=1}^{k+1} \frac{r^2(r+1)+1}{r(r+1)} = \frac{(k+1)(k+2)^2 - 2}{2(k+2)} + 1$
	LHS of $P(k+1)$
	$k(k+1)^2 - 2$, $(k+1)^2(k+2) + 1$
	$=\frac{k(k+1)^2-2}{2(k+1)}+1+\frac{(k+1)^2(k+2)+1}{(k+1)(k+2)}$
	$=\frac{k(k+1)^{2}(k+2)-2(k+2)+2(k+1)^{2}(k+2)+2}{2(k+1)(k+2)}+1$
	$=\frac{(k+1)^2(k+2)^2-2k-2}{2(k+1)(k+2)}+1$
	$=\frac{(k+1)(k+2)^2 - 2}{2(k+2)} + 1 = \text{RHS of P}(k+1)$
	2(
	Hence $P(k)$ is true $\Rightarrow P(k+1)$ is true.
	Since P(1) is true and
	$P(k)$ is true $\Rightarrow P(k+1)$ is true,
	by mathematical induction,
	$\sum_{r=1}^{n} \frac{r^2(r+1)+1}{r(r+1)} = \frac{n(n+1)^2 - 2}{2(n+1)} + 1 \text{ for } n \in \square^+.$

$$\begin{aligned} \mathbf{1(ii)} \quad \frac{r^{2}(r+1)+1}{r(r+1)} &= r + \frac{1}{r(r+1)} = r + \frac{1}{r} - \frac{1}{r+1} \\ \text{By cover-up rule, } A &= 1, B = -1 \\ \text{i.e. } \sum_{r=1}^{n} \frac{r^{2}(r+1)+1}{r(r+1)} &= \sum_{r=1}^{n} \left(r + \frac{1}{r} - \frac{1}{r+1}\right) \\ \sum_{r=1}^{n} \frac{r^{2}(r+1)+1}{r(r+1)} &= \sum_{r=1}^{n} r + \sum_{r=1}^{n} \left(\frac{1}{r} - \frac{1}{r+1}\right) \\ &= \sum_{r=1}^{n} r + \left[\frac{1 - \frac{1}{2}}{r} + \frac{1}{2} - \frac{1}{3}\right] \\ &= \sum_{r=1}^{n} r + \left(1 - \frac{1}{n+1}\right) \\ &= \sum_{r=1}^{n} r + \left(1 - \frac{1}{n+1}\right) \\ &= \frac{n(n+1)^{2} - 2}{2(n+1)} + 1 - \left(1 - \frac{1}{n+1}\right) \\ &= \frac{n(n+1)^{2} - 1}{n+1} + 1 - 1 + \frac{1}{n+1} \\ &= \frac{n(n+1)}{2} \end{aligned}$$

Qn Suggested Solution
2(i)
$$k = (\frac{1}{2}x^3 \sin \frac{\pi}{3} + hx)(3x)$$

 $= \frac{3\sqrt{3}}{4}x^3 + 3hx^2$
 $\therefore h = \frac{1}{3x^2} (k - \frac{3\sqrt{3}}{4}x^3) = \frac{k}{3x^2} - \frac{\sqrt{3}}{4}x$
 $A = 2(\frac{1}{2}x^2 \sin \frac{\pi}{3}) + 2(3x^2) + 2(hx) + 2(3hx)$
 $= \frac{\sqrt{3}}{2}x^2 + 6x^2 + 8hx$
 $= \frac{\sqrt{3}}{2}x^2 + 6x^2 + 8x(\frac{k}{3x^2} - \frac{\sqrt{3}}{4}x)$
 $= \frac{\sqrt{3}}{2}x^2 + 6x^2 + 8\frac{k}{3x} - 2\sqrt{3}x^2$
 $= 6x^2 - \frac{3\sqrt{3}}{2}x^2 + \frac{8k}{3x}$ (shown)
 $\therefore \frac{dA}{dx} = 12x - 3x\sqrt{3} - \frac{8k}{3x^2}$
For stationary values, $\frac{dA}{dx} = 12x - 3x\sqrt{3} - \frac{8k}{3x^2} = 0$
 $12x - 3x\sqrt{3} - \frac{8k}{3x^2} = 0$
 $9x^3(4 - \sqrt{3}) = 8k$
 $x^3 = \frac{8k}{9(4 - \sqrt{3})}$
 $\therefore x = (\frac{8k}{9(4 - \sqrt{3})})^{\frac{1}{3}}$
 $\frac{d^2A}{dx^2} = 12 - 3\sqrt{3} + \frac{16k}{3x^3}$
Since $x^3 > 0, k > 0, 12 - 3\sqrt{3} > 0$

	Alternative
	$\frac{d^2 A}{dx^2} = 12 - 3\sqrt{3} + \frac{16k}{3x^3}$
	$=12-3\sqrt{3}+\frac{16k}{3}\left(\frac{9(4-\sqrt{3})}{8k}\right)$
	$=12-3\sqrt{3}+6(4-\sqrt{3})$
	$=36-9\sqrt{3}>0$
	\therefore area A is a minimum.
2(ii)	Using $k = 360$ and $A = 300$,
	$300 = 6x^2 - \frac{3\sqrt{3}}{2}x^2 + \frac{8(360)}{3x}$
	$1800x = 36x^3 - 9\sqrt{3}x^3 + 5760$
	$x^3 - 88.185x + 282.19 = 0$
	From GC, since $x > 0$,
	x = 3.8442 or $x = 6.8587When x = 3.8442,$
	$h = \frac{360}{3(3.8442)^2} - \frac{\sqrt{3}}{4}(3.8442) = 6.46.$
	When $x = 6.8587$,
	$h = \frac{360}{3(6.8587)^2} - \frac{\sqrt{3}}{4}(6.8587) = -0.419 \text{ (rej. : } h > 0)$
	$\therefore x = 3.84, h = 6.46.$

Qn	Suggested Solution	
3(i)	For $w^4 - 2w^2 + 2 = 0$,	
	$_{2}$ -(-2) $\pm \sqrt{(-2)^{2} - 4(1)(2)}$	
	$w^{2} = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(2)}}{2} = 1 \pm i$	
	$w^2 = 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}$	
	$=\sqrt{2}e^{i\left(\frac{\pi}{4}+2k\pi\right)}$	
	: $w = 2^{\frac{1}{4}} e^{i\left(\frac{\pi}{8} + k\pi\right)}$, $k = 0, -1$	
	$\therefore w = 2^{\frac{1}{4}} e^{i\left(-\frac{7\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(\frac{\pi}{8}\right)}$	
	Since the coefficients of the equation are real,	
	the conjugates of the above roots of <i>w</i> are also roots for	
	the equation.	
	$\therefore w = 2^{\frac{1}{4}} e^{i\left(-\frac{7\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(\frac{\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(-\frac{\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(\frac{7\pi}{8}\right)}$	
	Alternatively	
	For $w^4 - 2w^2 + 2 = 0$,	
	$w^{2} = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(1)(2)}}{2} = 1 \pm i$ $w^{2} = 1 + i \qquad \text{or} \qquad w^{2} = 1 - i$	
	$w^2 = 1 + i$ or $w^2 = 1 - i$	
	$=\sqrt{2}e^{i\frac{\pi}{4}} \qquad \qquad =\sqrt{2}e^{-i\frac{\pi}{4}}$	
	$=\sqrt{2}e^{i\left(\frac{\pi}{4}+2k\pi\right)} = \sqrt{2}e^{i\left(-\frac{\pi}{4}+2k\pi\right)}$	
	$\therefore w = 2^{\frac{1}{4}} e^{i\left(\frac{\pi}{8} + k\pi\right)}, k = 0, -1 \text{ or } w = 2^{\frac{1}{4}} e^{i\left(-\frac{\pi}{8} + k\pi\right)}, k = 0, 1$	
	$\therefore w = 2^{\frac{1}{4}} e^{i\left(-\frac{7\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(-\frac{\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(\frac{\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(\frac{\pi}{8}\right)}, 2^{\frac{1}{4}} e^{i\left(\frac{7\pi}{8}\right)}$	
	[Note: Students ought to recognize that roots of <i>w</i> must be in conjugate pairs due to real coefficients in the equation.]	
3(ii)	 Im	
	Locus of z for ((iii)
	$W_4 \qquad 2^{\frac{1}{4}} \qquad W_3$	
	$\pi/8$ $\pi/8$ Re	
	$\pi/8 \qquad \qquad$	
	$w_1 = \frac{\pi/8}{2}$	
	$w_1 \qquad w_2$	
	Note: Students aught to reacting that since the reacts of a gas in	
	[Note: Students ought to recognize that since the roots of <i>w</i> are in conjugate pairs, they will be reflections of one another in the <i>x</i> -axis.]	

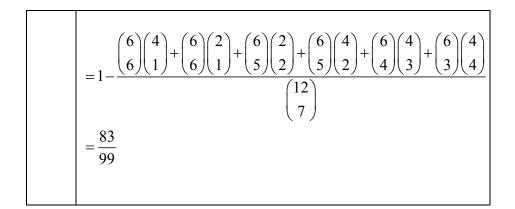
3(iii)	Since the locus is a <u>half-line</u> from the point representing w_1 and <u>angled at $\pi/8$ from the positive Re-axis direction, it will</u>
	pass through the origin and eventually the point representing w_3 since $\arg(w_3) = \pi/8$
	Alternative Method $a_{1/4} = \frac{2^{1/4} e^{i(\pi/8)}}{2^{1/4} e^{i(\pi/8)}} = 2^{1/4} e^{i(\pi/8)} e^{i$
	$\arg(2^{1/4}e^{i(\pi/8)} - 2^{1/4}\left[\cos(-7\pi/8) + i\sin(-7\pi/8)\right])$
	$= \arg \left(2^{1/4} \left[e^{i(\pi/8)} - e^{i(-7\pi/8)} \right] \right)$
	$= \arg \left(2^{1/4} e^{i(\pi/8)} \left[1 - e^{i(-\pi)} \right] \right)$
	$= \arg \left(2^{1/4} e^{i(\pi/8)} \left[1 - (-1) \right] \right)$
	$= \arg \left(2^{5/4} e^{i(\pi/8)} \right)$
	$=\frac{\pi}{2}$
	δ
	<u>Alternatively,</u> π
	substitute $z = w_3$ into LHS of $\arg(z - w_1) = \frac{\pi}{8}$
	$\arg(w_3-w_1)$
	$= \arg(-w_1 - w_1) (\text{Since } w_3 = -w_1, \text{ rotation of } \pi \text{ about origin})$
	$= \arg\left(-2w_{1}\right)$
	$= \arg(-2) + \arg(w_1)$
	$=\pi-\frac{7\pi}{8}$
	$=\frac{\pi}{2}$
	8
	*Locus drawn in (ii)
	Cartesian Equation of locus:
	$y = x \tan\left(\frac{\pi}{8}\right), x > 2^{1/4} \cos\left(-\frac{7\pi}{8}\right)$

Qn Suggested Solution
4(i)
$$l: r = \begin{pmatrix} 2 \\ -1 \\ a \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Let the acute angle between l and p_1 be θ .
 $\cos(90^\circ - \theta) = \sin \theta = \left| \begin{pmatrix} -1 \\ 0 \\ 1 \\ 2 \\ \sqrt{2}\sqrt{14} \\ 1 \\ \sqrt{2}\sqrt{14} \\ 1 \\ \sqrt{28} \\ \theta = 10.9^\circ$
4(ii) Method 1
 $(0,5,0)$ is a point on p_1 .
Perpendicular distance from the point A to p_1
 $= \left| \begin{bmatrix} 2 \\ 2 \\ 0 \\ \sqrt{14} \\ 0 \\ \sqrt{14} \\ 1 \\ \frac{1}{\sqrt{14}} \end{bmatrix} = \frac{3}{\sqrt{14}}$
Method 2
Perpendicular distance from the point A to p_1
 $= \left| \frac{5 - \begin{pmatrix} 2 \\ 2 \\ 0 \\ \sqrt{14} \\ \sqrt{14} \\ 1 \\ \frac{1}{\sqrt{14}} \end{bmatrix} = \frac{3}{\sqrt{14}}$
 $p_1 = \frac{5 - \begin{pmatrix} 2 \\ 2 \\ 0 \\ \sqrt{14} \\ 1 \\ \frac{1}{\sqrt{14}} \end{bmatrix} = \frac{3}{\sqrt{14}}$
 $p_1 = \frac{5 - \begin{pmatrix} 2 \\ 0 \\ \sqrt{14} \\ 1 \\ \frac{1}{\sqrt{14}} \end{bmatrix} = \frac{3}{\sqrt{14}}$
Method 3

Let *F* be the foot of perpendicular and it lies on both

$$l_{AF}$$
 and p_1 .
 $l_{AF} : \underline{r} = \begin{pmatrix} 2\\ 2\\ 0 \end{pmatrix} + \mu \begin{pmatrix} 3\\ 1\\ 2 \end{pmatrix} = , \mu \in \mathbb{I}$
 $\begin{bmatrix} \begin{pmatrix} 2\\ 2\\ 0 \end{pmatrix} + \mu \begin{pmatrix} 3\\ 1\\ 2 \end{pmatrix} = , \mu \in \mathbb{I}$
 $\Rightarrow \mu = -\frac{3}{14}$
 $\overline{OF} = \begin{pmatrix} 2\\ 2\\ 0 \end{pmatrix} + \begin{bmatrix} -\frac{3}{14} \begin{pmatrix} 3\\ 1\\ 2 \end{bmatrix} \\ \overline{AF} = \overline{OF} - \overline{OA} = -\frac{3}{14} \begin{pmatrix} 3\\ 1\\ 2 \end{pmatrix} \\ \overline{AF} = \begin{bmatrix} -\frac{3}{14} \begin{pmatrix} 3\\ 1\\ 2 \end{pmatrix} \\ \overline{AF} = \begin{bmatrix} -\frac{3}{14} \begin{pmatrix} 3\\ 1\\ 2 \end{pmatrix} \end{bmatrix} = \frac{3\sqrt{14}}{14}$
4(iii)
 $l: \underline{r} = \begin{pmatrix} 2\\ -1\\ a \end{pmatrix} + \lambda \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}$
To find b:
Method 1
Direction vector of *I* is perpendicular to normal vector of p_3 ,
 $\begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ b \end{pmatrix} = 0 \Rightarrow -1 + b = 0 \Rightarrow b = 1$
Method 2
 $\begin{pmatrix} 1\\ -4\\ 1\\ 1 \end{pmatrix} \times \begin{pmatrix} 1\\ -1\\ b \end{pmatrix} = k \begin{pmatrix} -1\\ 0\\ 1 \end{pmatrix}$
 $\Rightarrow k = 3, b = 1$
To find c:


	Method 1
	Since l lies on p_2 ,
	$ \begin{pmatrix} 2 \\ -1 \\ a \end{pmatrix} \Box \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix} = 6 $
	$2 - 4(-1) + a = 6 \Longrightarrow a = 0$
	Since l lies on p_3 ,
	$ \begin{pmatrix} 2\\1\\0 \end{pmatrix} \Box \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = c $
	$2 - (-1) + b(0) = c \Longrightarrow c = 3$
	$\frac{\text{Method } 2}{\text{Since } l \text{ lies on } p_2,}$
	$ \begin{pmatrix} 2-\lambda \\ -1 \\ a+\lambda \end{pmatrix} \Box \begin{pmatrix} 1 \\ -4 \\ 1 \end{pmatrix} = 6 $
	$\Rightarrow 6 + a = 6 \Rightarrow a = 0$
	Since l lies on p_3 ,
	$ \begin{pmatrix} 2-\lambda \\ -1 \\ \lambda \end{pmatrix} \Box \begin{pmatrix} 1 \\ -1 \\ h \end{pmatrix} = c $
	$\begin{pmatrix} \lambda \end{pmatrix} \begin{pmatrix} b \end{pmatrix}$ $(3-c)+(b-1)\lambda = 0$
	Since the equation is <u>always true regardless of λ</u> .
	$3-c=0 \Rightarrow c=3 \&$ $b-1=0 \Rightarrow b=1$
4(2)	
4(iv)	Let <i>M</i> be the midpoint of <i>A</i> and <i>B</i> .
	$\overrightarrow{OM} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2} = \frac{1}{2} \begin{bmatrix} 2\\2\\0 \end{bmatrix} + \overrightarrow{OB} \end{bmatrix}$
	$\frac{1}{2} \begin{bmatrix} 2\\2\\0 \end{bmatrix} + \overrightarrow{OB} \end{bmatrix} \Box \begin{pmatrix} 3\\1\\2 \end{bmatrix} = 5$
	$\Rightarrow \begin{pmatrix} 2\\2\\0 \end{pmatrix} \Box \begin{pmatrix} 3\\1\\2 \end{pmatrix} + \overrightarrow{OB} \Box \begin{pmatrix} 3\\1\\2 \end{pmatrix} = 10$
	$\Rightarrow \overrightarrow{OB} \square \begin{pmatrix} 3\\1\\2 \end{pmatrix} = 10 - 8 = 2$
	\therefore A cartesian equation for the locus of <i>B</i> is
	3x + y + 2z = 2.

Note: Locus is a plane parallel to p_1

Qn	Suggested Solution
5(a)	Advantages of stratified sampling over quota sampling
	 More likely to give a representative sample of the people attending the event as this method ensures an adequate sample size for each of the two sub-groups The stratified sample is a random sample. It is unlike quota sampling which produces a biased sample by using any method of convenience to select the people for each sub-group.
	A stratified sample is difficult to carry out as it would be <u>difficult to obtain the sampling</u> <u>frame</u> prior to the event.
(b)	 Remark to students: Please note that even though sampling frame was not readily available before the event, by standing at a common place that all people will pass through (eg: exit of the venue), the surveyor would still be able to have access to the entire sampling frame for systematic sampling. To obtain a systematic sample of 1% of the population of people attending the event: Select a random number between 1 to 100 to get a random starting point e.g. 10
	• From the start to the end of the one-day event, sample <u>every 100th person</u> at the exit of the venue, starting from the 10 th person, i.e. 10, 110, 210, 310,
Qn	Suggested Solution
6(i)	Probability = P(drawing from box A,B,A,B,A,B) =P(drawing R,W,R,W,R) = $\left(\frac{5}{10}\right)\left(\frac{6}{10}\right)\left(\frac{4}{9}\right)\left(\frac{5}{9}\right)\left(\frac{3}{8}\right)$ = $\frac{1}{36}$
6(ii)	Let event E be the event that he drew from box B on the fourth draw.
	Let event F be the event that he has not drawn from
	box C from the first to his sixth draw, including the sixth draw.

$P(F \cap E)$
$=\frac{1}{36}$
P(E)
= P(drawing from A,B,C,B or A,B,A,B or A,C,A,B)
= P(drawing R,R,W or R,W,R or W,R,R)
$= \left(\frac{5}{10}\right) \left(\frac{4}{10}\right) \left(\frac{7}{10}\right) + \left(\frac{5}{10}\right) \left(\frac{6}{10}\right) \left(\frac{4}{9}\right) + \left(\frac{5}{10}\right) \left(\frac{3}{10}\right) \left(\frac{5}{9}\right)$
$=\frac{107}{300}$
P(F E)
$P(F \cap E)$
$=\frac{P(F \cap E)}{P(E)}$
P(drawing from box A, B, A, B, A, B)
P(drawing from box B on fourth draw)
$=\frac{\frac{1}{36}}{107}$
$\frac{107}{300}$
25
$=\frac{20}{321}$

Qn	Suggested Solution
7(i)	There are 8! ways to arrange the 8 girls. There are 9
	possible spaces where boys can be slotted in. Choose 4
	spaces out of 9. There are 4! ways to arrange the boys.
	$\downarrow_{G_1} \downarrow_{G_2} \downarrow_{G_3} \downarrow_{G_4} \downarrow_{G_5} \downarrow_{G_6} \downarrow_{G_7} \downarrow_{G_8} \downarrow$
	P(all boys are separated) = $\frac{8! {}^{9}C_{4}4!}{12!} = \frac{14}{55}$ or 0.255
7(ii)	Choose 2 out of 8 girls to be on both sides of the particular boy. There are 2! ways to arrange the 2 girls. Taking GBG as one group, there are 10! ways to arrange the group and 9 other students.
	GBG G G G G G B B B
	P(a particular boy is between 2 girls)
	$=\frac{{}^{8}C_{2}2!10!}{12!}=\frac{14}{33} \text{ or } 0.424$
7(iii)	Taking the boys as one group, there are 4! ways to arrange the boys. Taking the boys group as reference point, there are 8! ways to arrange the rest of the 8 girls.
	P(all boys next to one another in a circle)
	$= \frac{4!8!}{(12-1)!} = \frac{4}{165} \text{ or } 0.0242$
7(iv)	Method 1 P(at least 1 student from each race)
	= $1 - P(Chinese and Malay only or Chinese and Indian only)$
	$=1-\frac{{}^{10}C_7+{}^8C_7}{{}^{12}C_7}$
	$=1-\frac{16}{99}$
	$=\frac{83}{99}$ or 0.838
	$\frac{\text{Method 2}}{\text{Let } C, I, M \text{ to denote a Chinese, Indian, and Malay student respectively.}}$
	P(at least 1 student from each race) = $1 - P(6C \ 1M, \ 6C \ 1I, \ 5C \ 2I, \ 5C \ 2I, \ 4C \ 3M, \ 3C \ 4M)$

Qn	Suggested Solution
8(i)	$\begin{array}{c} y \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$
8(ii)	Scatter diagram: $ \begin{array}{c} $

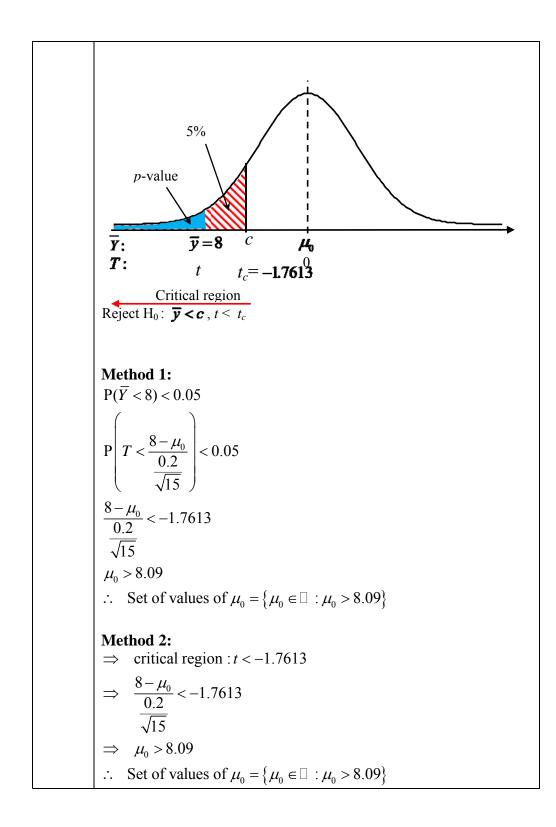
(iii)	$y = a + b \ln x$ is the better model. Reason: y is decreasing at a decreasing rate as x increases.	
(iv)	Interpretation: Value of <i>a</i> represents <u>Amy's</u> predicted weight one month after she began her healthy eating lifestyle and exercise regime. r = -0.996 (3sf) Useful Screenshots for reference: $\frac{1}{2} \boxed{12} \boxed{8} 3$ $\frac{1}{3} \underbrace{61.4}_{3} 0$ $59.5 1.6094_{7}$ $58.9 1.9459_{9}$ $9 58.5 2.1972_{1}$ $1 58.2 2.3979_{}$ $L3 = ln(L1)$ $\boxed{Intersector}$ $X1 i st : L3$ $Y1 i st : L3$ $Y1 i st : L2$ FreqList: Store Re9EQ: Y1 Calculate $y=a+bx$ $a=61.48909192$ $b=-1.333597636$ $r^{2} = .9928110248$ $r=9963990289$	
	[Remark: Those who indicated that the linear model is the better model in (iii) will be given marks accordingly.]	
	For those who chose $y = c + dx$ in (iii): Value of <i>c</i> represents <u>Amy's predicted initial</u> weight before she began her healthy eating lifestyle and exercise regime r = -0.967	
(v)	Equation of regression line: $y = 61.489 - 1.3336 \ln x$ When $y = 55$:	

	$55 = 61.489 - 1.3336 \ln(x)$ x = 129.77 (5sf) She will reach a weight of 55kg in the <u>130th</u> <u>month</u> after she started.
	For those who chose $y = c + dx$ in (iii):
	Equation of line as $y = 61.268 - 0.30571x$ Substituting $y = 55$ into equation to obtain $x = 20.503$ She will reach a weight of 55kg in the 21^{st} month after she started.
(vi)	For any model chosen in (iii):
	As $x \to \infty, y \to -\infty$.
	Thus, this implies that Amy's weight will
	decrease to a negative value over time ,
	which is unrealistic.

Qn	Suggested Solution
9(i)	Let <i>X</i> be the sleeping hours of a randomly chosen baby who
	drinks BabyGrow. $X \sim N(8.0, \sigma^2)$

	Let <i>Y</i> be the sleeping hours of a randomly chosen baby who
	drinks InfanGrow. $Y \sim N(6.5, 0.795^2)$
	P(X < 9) = 0.85
	$P\left(Z < \frac{9-8}{\sigma}\right) = 0.85$
	$\frac{9-8}{\pi} = 1.0364$
	$\sigma = 0.96488$
	= 0.965 (3 s.f.)
9(ii)	Let <i>W</i> be the number of babies who slept more than 7 hours,
	out of 12 babies.
	P(X > 7) = P(X < 9) = 0.85 (by symmetry)
	$W \sim B(12, P(X > 7))$
	$\Rightarrow W \sim B(12, 0.85)$
	$P(W \ge 10)$
	$=1-\mathrm{P}(W\leq9)$
	=1-0.26418
	= 0.73582 = 0.736 (3 s.f.)
9(iii)	Let $T = X_1 + X_2 + X_3 \sim N(3 \times 8, 3 \times 0.96488^2)$
	\Rightarrow $T \sim N(24, 2.7930)$
	$4Y \sim N(4 \times 6.5, 4^2 \times 0.795^2) \Longrightarrow 4Y \sim N(26, 10.112)$
	$\therefore T - 4Y \sim N(24 - 26, 2.7930 + 10.112)$
	\Rightarrow $T - 4Y \sim N(-2, 12.905)$
	P(T-4Y>1)
	= 0.20183 = 0.202 (3 s.f.)
9(iv)	P(Y < 5.5) = 0.10422
	Expected number of babies on InfanGrow who will develop
	obesity = $20\% \times 300 \times P(Y < 5.5)$
	= 6.25 (3 s.f.)

Qn	Suggested Solution
10	Let X = number of Math appointments in 5-day period
(i)	$X \sim \operatorname{Po}(5(1.8)) \Longrightarrow X \sim \operatorname{Po}(9)$
	$P(X \le 6) = 0.207$ (3 sf, by GC)


Use GC Poisson pdf to generate listing: $r P(X = r)$ 7 0.11712 8 0.13176 9 0.13176 10 0.11858 The most probable numbers = 8 and 9. Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10 Let <i>D</i> denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum <i>n</i> such that $P(D \le n) \ge 0.95$ Use GC Binomedf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be more experiment.	Qn	Suggested Solution
r $P(X = r)$ 70.1171280.1317690.13176100.11858The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day.D ~ B(30, 0.161)Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
r $P(X = r)$ 7 0.11712 8 0.13176 9 0.13176 10 0.11858 The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
r $P(X = r)$ 7 0.11712 8 0.13176 9 0.13176 10 0.11858 The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
r $P(X = r)$ 7 0.11712 8 0.13176 9 0.13176 10 0.11858 The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
r $P(X = r)$ 70.1171280.1317690.13176100.11858The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day.D ~ B(30, 0.161)Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
r $P(X = r)$ 7 0.11712 8 0.13176 9 0.13176 10 0.11858 The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		Use GC Poisson pdf to generate listing
8 0.13176 9 0.13176 10 0.11858 The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomedf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
9 0.13176 10 0.11858 The most probable numbers = 8 and 9.Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomedf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
Image:		
The most probable numbers = 8 and 9. Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10 Let <i>D</i> denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum <i>n</i> such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
Recall fact: For Poisson distribution where λ is an integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
integer, Mode = $(\lambda - 1)$ and λ 10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		The most probable numbers $= 8$ and 9 .
10Let D denote the number of days out of 30, that there are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		Recall fact: For Poisson distribution where λ is an
(ii) are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum <i>n</i> such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		integer, Mode = $(\lambda - 1)$ and λ
(ii) are exactly 3 Math appointments a day. $D \sim B(30, 0.161)$ Find minimum <i>n</i> such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be	10	Let D denote the number of days out of 30 that there
$D \sim B(30, 0.161)$ Find minimum <i>n</i> such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ $\therefore \text{ least } n = 8$ The mean number of appointments may not be constant from day to day because there may be		-
Find minimum n such that $P(D \le n) \ge 0.95$ Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
Use GC Binomcdf listing: $P(D \le 7) = 0.903 \le 0.95$ $P(D \le 8) = 0.958 \ge 0.95$ $P(D \le 9) = 0.984$ $\therefore \text{ least } n = 8$ The mean number of appointments may not be constant from day to day because there may be		
P(D ≤ 7) = 0.903 ≤ 0.95 P(D ≤ 8) = 0.958 ≥ 0.95 P(D ≤ 9) = 0.984 ∴ least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
P($D \le 8$) = 0.958 ≥ 0.95 P($D \le 9$) = 0.984 \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
P($D \le 9$) = 0.984 \therefore least $n = 8$ The mean number of appointments may not be constant from day to day because there may be		
∴ least n = 8 The mean number of appointments may not be constant from day to day because there may be		
The mean number of appointments may not be constant from day to day because there may be		$P(D \le 9) = 0.984$
constant from day to day because there may be		\therefore least $n=8$
constant from day to day because there may be		
constant from day to day because there may be		
		**
more appointments near exam period and rew or		more appointments near exam period and few or
none during the non-exam period.		

10 (iii)	Let <i>M</i> and <i>S</i> denote the number of Math & Science appointments respectively in 30 -day period.
	$M \sim \operatorname{Po}(30(1.8)) \Longrightarrow M \sim \operatorname{Po}(54)$
	$S \sim \operatorname{Po}(30(2.2)) \Longrightarrow S \sim \operatorname{Po}(66)$

Since $\lambda_M = 54 > 10$ and $\lambda_S = 66 > 10$, hence $M \sim N(54, 54)$ approx and $S \sim N(66, 66)$ approx Thus, $S - M \sim N(12, 120)$ approximately P(S - M > 12) = P(S - M > 12.5) with continuity correction = 0.482 (3 sf)

Qn	Suggested Solution
11(i)	An unbiased estimate is an estimate in which the expectation of the
	estimator is equal to the population parameter.
11(ii)	Unbiased estimate for population mean
	$=\frac{\sum(x-18)}{50}+18$
	= 21.306
	Unbiased estimate of population variance σ^2
	$= s^{2} = \frac{1}{49} \left[\sum (x - 18)^{2} - \frac{\left(\sum (x - 18)\right)^{2}}{50} \right]$
	= 6.7351
	= 6.74 (3 s.f.)

11(iii)	Let <i>X</i> be the mass of each bag of beans produced in Factory A.
	To test H_0 : $\mu = 22$
	Against $H_1: \mu \neq 22$
	Conduct a Two-tailed test at 5% level of significance:
	Under H_0 , since $n = 50$ is large, by Central Limit Theorem,
	$\overline{X} \sim N\left(22, \frac{6.7351}{50}\right)$ approximately
	Using a Z-test,
	p-value = 0.0586 > 0.05
	Since <u><i>p</i>-value > 0.05</u> , we do not reject H_0 and conclude that
	there is insufficient evidence at the 5% level of significance
	that the claim is not valid / that the mean mass of each bag
	of beans is not 22 kg.
	2-lest 2-lest Inpt:Data [18:18:5] μ≠22 μ≠22
	z=-1.890916922 σ:2.5952071208 p=.0586353027 x:21.306 x=21.306
	n=50 n=50
	μ: <mark>Fun</mark> <μα >μα Calculate Draw
11(iv)	<i>p</i> -value is the <u>lowest</u> level of significance for which the null hypothesis of the <u>mean mass of the bag of beans of 22 kg</u> will be
	rejected.
	Let <i>Y</i> be the mass of each bag of beans produced in Factory A.
	Objective: To test if $\mu = \mu_0$ is an overstatement.
	To test $H_0: \mu = \mu_0$
	Against H : u < u
	Against $H_1: \mu < \mu_0$
	Against $H_1 : \mu < \mu_0$ Under H_0 ,
	Under H ₀ ,
	Under H ₀ ,
	Under H ₀ , $T = \frac{\overline{Y} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{\overline{Y} - \mu_0}{\frac{0.2}{\sqrt{15}}} \sim t(14)$
	Under H ₀ ,
	Under H ₀ , $T = \frac{\overline{Y} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{\overline{Y} - \mu_0}{\frac{0.2}{\sqrt{15}}} \sim t(14)$
	Under H ₀ , $T = \frac{\overline{Y} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{\overline{Y} - \mu_0}{\frac{0.2}{\sqrt{15}}} \sim t(14)$ Using test statistic, $t = \frac{8 - \mu_0}{\frac{0.2}{\sqrt{15}}}$,
	Under H ₀ , $T = \frac{\overline{Y} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{\overline{Y} - \mu_0}{\frac{0.2}{\sqrt{15}}} \sim t(14)$ Using test statistic, $t = \frac{8 - \mu_0}{\frac{0.2}{\sqrt{15}}}$, since there is sufficient evidence at 5% level of significance,
	Under H ₀ , $T = \frac{\overline{Y} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{\overline{Y} - \mu_0}{\frac{0.2}{\sqrt{15}}} \sim t(14)$ Using test statistic, $t = \frac{8 - \mu_0}{\frac{0.2}{\sqrt{15}}}$, since there is sufficient evidence at 5% level of significance,
	Under H ₀ , $T = \frac{\overline{Y} - \mu_0}{\sqrt{\frac{s^2}{n}}} = \frac{\overline{Y} - \mu_0}{\frac{0.2}{\sqrt{15}}} \sim t(14)$ Using test statistic, $t = \frac{8 - \mu_0}{\frac{0.2}{\sqrt{15}}}$, since there is sufficient evidence at 5% level of significance,

