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Chapter 10: Recurrence Relations

SYLLABUS INCLUDES:

. H2 Further Mathematics

Sequence generated by a simple recurrence relation, including the use of graphing
calculator to generate the sequence defined by the recurrence relation

Behavior of a sequence, such as the limiting behavior of a sequence

Solution of
(1)  First order linear (homogeneous and non-homogeneous) recurrence relations with

constant coefficients of the form u, = au, | +b,abeR,a#0
(i1)  Second order linear homogeneous recurrence relations with constant coefficients

Modelling with recurrence relations of the forms above

CONTENT
1  Introduction
2 Sequence Generated by a Recurrence Relation
3 1*order linear recurrence relations wi“th constant coefficients
3.1 Definttions
3.2 Solution of a 1* order linear recurrence relation
4 2™ order linear homogeneous recurrence relations with constant coefficients
4.1 Characteristic equation of a 2" order linear homogeneous recurrence relation
4.2 General solution of a 2™ order linear homogeneous recurrence relation
S Non-linear 1% order recurrence relations

Annex 1: Alternative proof for the general solution of a 2™ order linear homogeneous
recurrence relation
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N 1883, T Puzzle consigys of three pegs mounteq on a board together with disf-fs_of |
SI1ZCs. Suppose initially there are rdisks placed on the first pegin order of size, with the arp

INTRODUCTION
The Tower of Hanoi is 5 Popular puzzle invented by the French mathematician Edo*'__f_."-?‘ ncag
al the bottop, (as shown). The rules of the puzzle allow disks t0 be moved 0ne ai a tme fromq

one peg 1o another a5 long as 3 disk is never placed op top of a smaller disk. The objective of
1€ puzzle is 14 transfer a|] {he disks in Peg 1 to one of the other pegs in order of size, with tha

largest a¢ the bottom.

How- Many moves are fequired? What is the relationship between the number of moves
Tequired for, 53y, 10 disks anq for 9 disks?

In this chapter, we Will learn how to solve such Problems with the use of recurrence relations,

2 SEQUENCE GENERATED BY A RECURRENCE RELATION

Recall that a Seéquence is a set of Numbers arranged in a defineqd order according to a certajy
rule. For example: the SCquence that is i arithmetic Progression 5, 8, 11, 17 -

A sequence can be generated by 5 recurrence relation of the form Yo =1(u,), where nezy
and the (n+)th term, w, .. is linkeq 1o its previous term x, , by 4 formula, 1t e nitial
condition (i.e. the value of ) js given, then we can determine a>M3,. TeCUTSIVEY by

U =f(u,), u, = f(,) and so on.

For example, the Séquence 5, 8, 11, 14, . . can be defined bya recurrencetelation of the form

U, =u, ,+3, with u, =5,

.)> an explicit expression for the phy term of the
b

Given a recurrence relation wu,,, =f (u
initial value, ,

sequence will depend not only.on z.but also its.
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Example 1

A sequence uy, ty, Uy, ... 18 defined by u, =3u,_,+2, for n= 2,3.4;....

Given that 1, =3, find the values of «, and .

Solution:
”I = g
fl: = ( -/ 14 f
3¢

1,3 = ]

=B ¥ = 1ed
u,
HS = :'(.'0'1 "; = 323
B = ?{?:?:54;:0:H

Using the GC to obtain terms in a scquence generated by a recurrence relation

1. Press and then scroll down to select
SEQ mode.

a1 T0 REaL " RADIAN. MF -
U Y l
CLASSIC

SCI  ENG
0123456789

0
RADIAN 1A 13

FUN

CTION PARAMETRIC POLAR HX1

7 pOT-THICK THIN DOT-THIN

SEQ

PG SIHUL

FRACTIONTYPE:[YX] Uns
ANSHERS:CIVII DEC FRAC-APPROX
G0 TO 2ZHDFORHAT GRRPH:[}E:' YES
STAT DIAGNOSTICS: OFF
STRATHIZARDS:[] OFF

SETCLOCK [F 9p

a+bl re~(eid
HORIZONTAL GRHP;I—T&BLE

2. Press
.

a. Key in the starting value of n : nMin =1
b. Key in the recurrence relation
u(n)=3u(n-1)+2.
(to obtain the letter u, press [2nd)[7);
to obtain the letter n, press (X..©.1].)

c. Key in the initial condition: #(nMin) =3

NORMAL FLOAT AUTO REAL RADIAN MP.: * R}

Plotz Plot3
nMin=1
1~u(n)B3uln-1)
u(nMin)B{32
B-v(n)=
v(nMin)=
B~winl=
w{nMinl=

3. Press GRAPH] to check the values of w4 and

ue.

From the GC, us =107, u, =971

u(n)

N B Ny |

r-3

wrnro| BEE
: 3

ERRD

11

07
323

2915
B?T
26243
78731

3
1l
E




2018 Year s :

atics . lowin
Raffles Institution H2 Further Mathema sider the fol &

: odel using
We can form a Mathematical m 20% of the trees

scenario. ment Plam r after
rest manageri® recurs yea
ins 4000 trees. Under a new o ted; this pattern number
A small forest contains irees will be planteds dent on the

: n
will be harvested cach year and 1000 new nd is depe

year. We know that the number of trees wil
of trees in the previous year.

| vary each year a

ear as U, , W€ ¢ that

If we denote the number of trees at the end of the nth y

Uy = 0.811” + 1000 :
- ng term
. dentify any o .
Will the number of trees increase or decrease over Ume?_ Cal-l lenl sustainable in the long
behavior? Taking into account the constraint of land space, 15 this p
run?

he nth year
Since u,,, =0.8u, +1000 where u_ represents the number of trees at the end of t y

] . ich converges,
and u, =4000, we see from the GC that u, forms an increasing sequence whic

: " : over
to 5000. Hence, the plan is sustainable and there is no issue with the lack of land space
time.

OO retz  Plot)
nMin=0

13 (n)B9. Buln-1)+1000
ulnHin)B{4000)

3 Rsk
wvin)=N
v(nMin)=
wwin)=
w{nHin)=

Derend: [T Ask

Alternatively, we can form the explicit expression for the nth term of the sequence.

u,=0.8u4,_, +1000

= 0.8(0.84,_, +1000)+1000 [by applying u, , = 0.8, _, +1000]
I -
= 0.8%,_, +1000(1+0.8) J ety
=0.8"(0.8x,_, +1000)+1000(1+0.8) [by applying u,_, =0.84 +1000]
= 0.8, , +1000(1+0.8+0.8%)
| gv‘l = —__.q ( ]_H-V‘v
l-r
= i 2 n-1
0.8"x, +1000(1+0.8+0.8* +...+0.8 ) g sl

1-0.8" B4 e
=0.8"u, +1000 :

1-0.8

08w, +50000-0.87 | “
i U.67u, +5000(1 0.8M rprefjed wtamg o ikie Cnytee 4
he-of telnmg (h)'

In the a.bove, we performed repeated substitution of the recurrence relation to solve the 15t '
order linear recurrence relation, » = 0.8y , +1000
n n- d

N ——— - A h
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3 1" ORDER LINEAR RECURRENCE RELATIONS WITH CONSTANT
COEFFICIENTS

3.1 Definitions

A recurrence relation is said to be linear if the expression is of the form ne *4p=Al”

o st w2
un = an—'lun-l +_an-2un-2 + '"+ a[ul it ao ’ . ?ON . @
where the a,'s are constants and not all are ZEeros. U,: 3u g% 2T,

)

If a, =0, we say that the recurrence relation is linear and homogeneous.

A recurrence relation is said to be order k if u,

is expressed in terms of some or all the
previous & terms of the sequence, that is, u

- and no terms earlier than u, , appears in the

expression. For example, u, = Uy +U,_, With 4, =1 and u, =1 is of order 2.

Example 2

For each of the recurrence relations, state the order and determine whether it is linear and if

it is linear, whether it is homogeneous.

Recurrence Relation | Order Linear/Non- Homogeneous/
linear Non-homogeneou
G |u= 0.2u,_, +40 I LB s n>rehopno
(i) U, =u, ,+n i Lincecr hen—bops
(i) | w, =2, ,+1 2 letor Pen-fomt 2
iv
W =i(x +—2—J ! I homa
n 2 n—1
xn—[
(V) _[n :e-]-n[n_l | il hop . hoane

3.2 Solution of a 1% order linear recurrence relation 2

To solve a recurrence relation is to find a formula to express the general term u, of the
sequence. Knowing the solution to the recurrence relation is especially useful when we need
to find the value of a certain term of the sequence efficiently; for instance the hundredth term
Uy, and where technology is not readily available. The solution also provides a better idea of

P ——

the growth rate of the sequence. For example, u,=2"u, as compared to
u, =2u,_ ,whereu, =200, n2>1.
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neral, to solve fora

In ge
n of the recurren

we can perform repeated substitutio

u, =au, +b [by app]y]ng = au,_s + b]

= aau,, +0FD

<\
=a'u,_, +b(1 + a) ")
=a’ (au"_J + b) + b(l + a)
i . S

—du ,+b(l+a+a’) L

[by applying -z = @™ b]

Gplita:

=d i, +b(l+a+a’ sioee B

=a"u,+b 1-a
1—-a ‘)
Y

Note that @ #1 for the above result to hold. 6+ Su* -V
If a=1, we have u, =, +nb.
Result 1A:
The solution for a 1% order linear recurrence relation of the form
nept

u =au,, +b where a,beR, a#0 and n 21,

n

= j, wherea=1.

is u, =a"u,,+b[
l-a

Ifa=1, un=uu+”b.

Exercise: y
Show that the solution for a 1** order linear homogeneous recurrence relation u. =au |, is
n ]
Uu :a"uo )
’ dy ¢ wgl,
I ( 0 U(h " )
T Q7 (a Uh~;)
- (, (’ f“’r '7 /\ | |
n
g (U,),
h
&} uf
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Example 3

A sequence is given by the recurrence relation[mf
5 & E 0 =
Show that u, =0.5" (u#,—50)+50. —— RS2

(i) Find the limit of #,,.

(ii) State the value of 1, which would result in g constant Sequence

Solution: - \

U, = 0-SUpq +218

= 05 (0FUp $36) 435
= 0-f‘m;+1)
= "'SL( 9.5 Uy 3 ‘H.g-) t2g (0.8 4)

S,W\(\J\ cbﬂ D‘PFleQj u."f — 0.5 u’ﬁ_l +U)

iy U i = Ty £56)
0.6 U3 +35 (0.8t 0.5 41) k}sw‘\’

i 0"
= 06" ", ﬁl&'{'lffo;r\) [Pesuls 147
= o.¢ “uo + \S_O("_U_fﬂ)

T o5 (u,-s o)+ 50

This can be proven by Mathematical Induction in Chapter g,

(@) As n—> o, 0.8"20, u, 7 0. Theefor linit of u, is &o-

(ii) The value of u, which would result in a constant sequence i 3.

Pecell: dn =0-8" (U,~50 ) 450

L_\/—._J

p ;

" 2 ‘__\/__/
dsﬂ,”"!f MHUM,M.

“




Raffles Institution H2 Further Mathematics . '
us conditions, such

2018 Yegr g

nsideration vario
etc. that affect the

Example 4 .
r raised geese in his form. Taking I 7 cocd by infection
deaths caus th is modeled

A poultry farme

as the birth of new g
population of geese in
by u,, where u,,, = 0.
() Find u,,u, and u;

(a) u, =576, (b) u, =320 and (¢) %, =318

(i)  Using the GC, describe the behaviour of the seque
Gii))  Show that u, = 0.75" (4, —320)+320 and deduce that as n bec

cese, sale of poultry, end of the nth mont

his farm, the number © e Faal
75u, +80 and %, represents the initial number of geest

in the cases when

nce in each case.
omes very 1arge;

u, —320.
/

Solution:

(i)@) u, =512, u, =464, u, =428
@()(b) u, =320, u, =320, u; =320
(i)(c) u, =318.5, u, =318.875, u;= 319.15625

Note:
Th
¢ model may produce numbers that have fractional value even though the number of

geese must be a whole number. (Ond windor)-
chomge fabll pevwvpls 4o fo

(f)(a) When u, =576, the sequence u,,u,,u4;, ... strictly decreases and converges to 320.
(ii)(b) When u, =320, the sequence u,,u,,u;, ... is a constant sccjuénce
(ii)(c) When u, =318, the sequence u,,u,,4;, ... strictly increases and converges to 320

(iii) u,=0.75u,_,+80
=0.75(0.75u,_, +80) +80
= 0.75%u, _, +80(1+0.75) st SSEA
=0.75%(0.75u,_, +80) +80(1+0.75)
=0.75u,_, +80(1+0.75+0.75%)

=0.75"u,, +80(1+ 075 £0.F554—+0.75).
=0.75" s o

=0.75"u, +320(=0.75")
=0.75" (u, —320) +320. (shown)

As n— o, 0.75" —0,s0 0.75"(u,—320) - 0.
Hence u, = 0.75" (u, —320) +320 — 320 . (deduced)
S ——
yemlised Porall .




)
Y4

RafTles Institution H2 Further Mathematics

2018 Year 5

Example §

Ul = 20000

On 1 January 2001 Mr X puts $20000 into an educational fund, and on the 1 day of each

subsequent year he makes a withdrawal of $1000. The interest rate was 2% per annum; so
that on the last day of each year the amount in the account increases by 2%.

The amount of money in the fund at the beginning of » th year after (n—l) th withdrawal is

denoted by u,,.

(i) Write down an expression for u,,,; in terms of u, and hence find an expression for

u,,; interms of n.

(if)  Find the amount in the fund to the nearest dollar after the 10" withdrawal.
(iii)  Calculate the number of withdrawals that can be made.

Solution:

b{s:no raatt A, e have

2 \{\ NN Ay
\k S ‘lk. AUYS 5_0000'.;0000({,02,)"
"\‘Q \\N \‘\\\ v ;.‘
: - <, oW
\_‘-\: \ipad
by ¢ L

(i) Mnﬂ = f.OZun -[00° , et u, = 2000

ol A eped a
_ w-— R '\ |- f'olﬂ
o = U, ey (T

R = 2000001:92)" 4 0000 (- 527

”ﬂr"}’|
v-""; AR
ﬂU—u\-\Q d n
» -2’
U= 8+ b( T )
e ad |

R'Q(N‘ o A7 Ny 1‘/“{]""{4
0 nsy pfen)
ndet fronly bu i

[

.o te
(i) u, = S0000 -30000({.02")

L}

13430 ( Rorect dollar)

(iii) 50000 -30000(102")<0’
l-o2">F '

0
")M =2%-8

nl.02

S 28 withdmwnd s are posyrble .

S——Qrtader fhaun 0.

Alternatively, from the GC :

AMin=|
\u (_u):.f-u?.u(y\-—l) -fooe
u(l) = 2povo

Pead| : Up a1 = )02, 1200




Raffles Institution H? Further Mathematics

——

mm not Nt3 . :
nMin=1
l'-.u(n)El.@Zu(n-l)—laee

u(ann)E(Z@@G@}
Iwv(n)=
OR UA o
n uin)
8 15539
9 14859
16 14147
13438
12 12639
13 11953
1y 11192
15 10416
16 9623.9
17 8316.4
18 79928
n=11

NORMAL FLOAT AuTQ REAL Rnnxnn HP .
PRESS + FOR aTb)

Result 1.

22
e ge i X i i
The genera] solution for 5 s order linear Tecurrence relatjon of the form

U, =au, +b where a,beR, a#0,1 andn>],

Is U, =A4a" + B where 4 and B are reg| constants

h
B= r_—"
Proof:

b
A'— u-a‘ N

If a#1, the 1

This can be dope if we let [7

"Xk and S S a 1

[

recurrence relation. Equating the two and solving for k gives the required form above,
—‘~‘___—'—i‘.—

We have seen that the solution for u_ = g

c .
a1 18 %, =a"u, and hence X, —k=a"u,.
3 ap.

o1k, a1general ssolution “forthe 18 order: dineat

ho-0 gt — |

Rearranging the terms, we obtain s
trecurrence relationy

Remarks:

Result 1A is useful but is hard to remember. Instead of

trying to remember the formula, we
could start with the perera! salution@f the forma

,=Aa" +B.




- W :
=1, . — looe
“ns1 =1.020 —1000 where 4 4

1 =20000 "0t (Looso ) 1000y
Te ene o fwg .
s m{ Plugiy, '33,(,%},3, u"lﬁ 54('-OL)"+B
Now, U 2448 < 30000 —cy (n=0 50 1,01,‘__’”
T ke — ) (e o o)
folu
Y A= - 35000 tnd B =50g00
< Ung = ~%0000((.52) "¢ spgo0
4 2" ORDER LINEARF )
OMOGE
CONSTANT COEFFICIENTS _ > RECURRENCE RELATIONS WITH
Recall that any recurrence relation of the form O”B%I;%P horde
(7 TR by
\u, =au_ + bu, [ where a,b€R, b0 and n>2, ) Uk
is called a second order homogeneous linear recurrence relation. W= AUas Forin.
h

4.1 Characteristic equation of 3 2nd U= en

Barctivn ot order linear homogeneous recurrence relatior&h Bl
¢ +Ln-

Let u,=s_and U, =1,"be two solutions for (1),

ie, s,=as., +bs, , and ¢ = ar,_ +bt ¢
Ci fth ,lH.‘(-walM{,bh
Then for constants 4 and B , we have S ™
Afi+1& =A(as, +bs, ,)+B(at,, +bt,_;) g 0 W ot
=a(4s,, +Bt,_)+b (As,,+Bt,_,) Ty dof,
: o Wn ————— Uu,
which means that [u, = As,+Bt,] a linear combination of solutions of the homogenous

recurrence relation (1) is also a solution of Al

e—

We thus note that any linear combination of solutions of a homogeneous recurrence linear
relation is also a solution.

In solving the first order homogeneous recurrence relation u, = au, , , we have established

ion i is impli =il ion, since an
that the general solution is », =a"u, . This implies that #, =a" is also a solution, s y
linear combination of solutions is also a solution.
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This suggests that, for a second order homo

geneous recurrence linear relation (1), we Mmay
have the solutions of the forméy =27,

o Uy, =2" U, gt
_ UnGUny +byp,
Subétituting this into equation (1), we will have H 8= e :
A" =ad™ +pAm?
e (V' ~aA~b)=0

Thus, eitherﬁ*&fo Or A2 ff_»ﬁ;{e;wb- j=-'¥(jj_______ )

Equation (2) is calleq thelcharacteristic equatiOEj of (1).

€9 Y- SUnq-4u,.,

e chorocty vy, Guation i3 .

A ShNwes,
IN-%) (- 1) =0
N4 or Nz

n

4 and 1" e bod, Slukivag o U,

&y ’Q{Slb & ond |"0g o iess Lo ng
= Uu: A4 tp1"

tb/‘l




WAty 1S
Wl URBIEE © .
2 abrpdfl| 5y¢ P
~a1~b=0 has two

distinct roots 4 and [z, |
solutions of (1). Thus,

and u, =A% g
solutions, A21"+B,12"

it is clear
a linear Combinatjg of these two

is also a solution of (1). - s
Cb) NOW ;'.2 —-a&-—b =0 ez (Alrea }_[ p[,\r-‘}f-"/,
, ol 3 (V‘(f PiR) Lyngy CABJ o
< : ) = / o
;{__-—-__G.._ C;+4b- 0 JKU“MI‘W{ﬁo @‘%&M \ ")u'ﬂ: ﬂ-r"c\n@
f'?/\’\ a ('( A ‘.;E.\I 5
Assume that (1) has only one root A, then ¢ +4b=0 and ; :5' [ ALt g
: _. v [f'”h’-) SFI
a
Thus, |p=_2_ and |1 ==
4 2 - _ 1
Using the above, we next verify thatl U, =nl } is mde?i,j SO(]I:‘EII‘()}I;L 22 (1).
= b ¢ & fine AL,
RHSof (1) =} @_1 3 et Uen = ()
ol (ol
=a(n 1)(2] +( 3 J( >
\-______ "',.
:n(g]n = nl" e
2

=u, =L.H.S of (1)

: g " and
ear combination of A" an
H if the characteristic equation has only one root, 1, the lin
ence, i : -
nA",ie AA"+BnA" is also a solution of (1).
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Lo dﬂ Exercise:
Lo ====0r. n _n\ia:
fe Show that the solution can be written as u,=r [(A + B)cos(n0)+(A B)lSln(nG)]
; L
"(ces 6 TLS'LBJCI‘.aracteristic cquation has two distinct complex roots.
 Unz AR 4BAL"
Al ] el
: Alre'®) 4 B[r'e°a)
w® n (Y} g
\r“'ﬂnép,uﬂs_s_ = [46 .;.B&-mej
ha YA
vk

"

A R TP
" [ ¢ (ne) + DS‘[A(MQ)J
Whese C =htg,

For an alternatiy.

to Annex 1.

€ proof of the general solution of a 2nd

Examgle 6

Find the solution for the Fibonaccj sequenc

Solutign:

The characteristic equation for f = b

I+A|—m)(—i) (+ J¢
An T AR

1Cn =A( %

Hence the general solution is
Finding Aavd G (deguy for 2101 Hrowmy
Given f, =0+and f; =1,"we have
fo 20: A48 =07 ehye

n : {
r [H(me‘} tisinn® )t g (e C-nl‘f)h‘gh(-—me))]

vsin (ﬂ"}J&

iy
1 b D‘:hl" :
\::wasw"ﬂ &

3 z
_|+ ,,_,zlS ,R. "}1‘",‘-0

(fero d¥emct quny reey )

[ty

DJU\&,MV*"“"&-
and £, =f:ﬂ(-’f§)'43(%;).
Soling, A= -g- ._EL
T be T (LE)"- F (5)",
= L
AN .,

L) Combie rea] and
(shown)

D= (A"B_)l.' are real tongfandy,

order linear recurrence relation, refer

fattied tondrtroun,,

@

O -
€ fo= o+, where f7=0"and/f =1

n=o

Y

fi(E)

Chapter 10: Recurrence Relations

Paoga 14 al’3I0




ot fae N

Al far
YA 2

ST

Ly
® Wit and ot e bud
Ou, | =9, , where Uy =2 and =3,

CA-3)~ -
A= 3 (equal rtaf rovyy
A

lfh&:\ i Od;a A feluitog
L] k¢
Hence the general solution ig U= A4(3")+ (3" © i iy

Given U, =2 and U =3, we have Uz AL" ¢ Bap ™

Uz 2=4
d Y= 3 < SA4 38 88 sy

B, o = 23" ()

* (20 3", [n30]

: ©
Find the solution for the recurrence relation U, =2u, ,~5u,_, where uy=1 and u =5,

n=Q ,

ﬂ'_,f
Solution:

- )= -
The characteristic equation for u_= 2u, ~5u,_,is At ortso

S P i
A= ZEde-4) B ziz%
Z

A = !f-),(: or A = =20 CJJI}él'ﬁv-f

Unz an" 4 B}-b = ptenrts)
wel, oL TN &
Hence the general solutionis U= A( | te0) t B(I-25) ;o

h — 3
C AH{WL&‘H%[? e M"'7 mih' Eon (J.’E‘) [C c‘,JChiﬁ:ii) +Dsnﬂ(':ﬁu: ..‘ 3)_7 d bodp 500
‘ ; of l/[o = J:C oA @ ey
7 Given u, =1 and u, =5, we have r 8- 4. (%}

L{r ZiE JE[CG-'J C‘{'M"Z)-&Dn'h (‘fan"zﬂ
U= [= A48

= <L D= Jye Bt D
and U, = & =A(1+25)1 8( | L 2¢) ' . ["55: ;: -‘Ywﬂ;p:l
Soluing , We have 4 : -/_‘; and B:if_—% " et Uo = (|
A B + B M /:r(r,oje s W Uhtan) s,
P, e (12 (1456)"¢ (52 ) 1-2" wﬂgﬁm‘ (At 277
Cpelon fena). (&))" fjf;ﬂCr;im: "2) 4 a)i s e 2)] J

' +
* ()" [eas (Man™2) tasiy (neant2)] 20  nez’t

mﬁ%“j’m“t

: lex
: rvation: : 'ormula involves comp
Interesting obse ai'flﬂll‘ 1 seauence. However its general fo

The-sequencelis pHvipusiy a,real sequence

Lhe-s2quence s

h
numbers. , e T
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Example 9 (Fibonacci Sequence)

two t
A pair of rabbits does not breed until they are two months old. Aﬁf:r :}l:z{l ?;’; N lr)le]:?onv?SF(;:ii
cach pair of rabbits produces another pair each month, as shown e thabmcdbiit eve;r e
the number of pairs of rabbits on the island after 1 months, assuming -

(Rosxen, 2007)
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Let u, be the number of pairs of rabbits on

the island at the end of the 5" month.
%, =number of pairs of rabbits a the end of the (r—1y*

rabbits at the end of the (n—2)"

month + number of pairs of
month (fertile rabbits that will reproduce), n>3.

5 Gewonds 90 hau you def
Second order recurrence relation: Un = Uny FUn-r, 123 & £ye ¥ Unaa* U

Initial conditions: Y, = ¢, Yy, = |

t

The characteristic equationis 2 - A-l=p o“'—“‘%"o“"‘" £55s
A = [+ m - ’i‘J_F
&

2

S R Ly (A, #1,)

General solutionis Ua =AA, "+ ga,": A (L}E) “('—ﬁ)

Since s, =1, u, =1,

le(MJI+B[1_—\/§JI and I=A(1+.\/§J2+B[1m‘/§]2
2 2

2= 4(1+45)+B(1-5) 4=A(1+\/§)2+B(1—\/§)2 ()

2—A(l+x/§) o
e o

Substitute (I) into (2),
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2-4(1++5)
1-/5
4=A(1+5 )+[2-A(1+J§)](1—J§)
4= A(6+2v5)+2-2V5- 4(1-5)
2+2J5 = A(6+2J§+4)
2(1++5)=24(5+5)
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5 NON-LINEAR 1 ORDER RECURRENCE RELATIONS

In the next few examples, we are not able to get an explicit expression for the nth term of the
sequence. However we are still able to determine its “long run behavior”.

Example 10

A sequence of real numbers u,, u,, us, ... satisfies the recurrence relation u,,, = Ju, +3 for
)

=123 : _ = (Unt3)+

(i) Use a graphic calculator to determine the behaviour of the sequence in each of the cases
(@) yy=1and (b) u, =6

(if) Given thatas n— o, 1, —/, find the exact value of / using an algebraic method.
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Solution:

Using GC
L. Change to SEQ mode.

@AX3] Plot2 Plot3
2. Goto[¥d allin=1
menu. u(n)Blu(n-1)+3
u(nMin)B{1}
, va(n)=)

: c v(nMin)=
3a. Key in the starting value of 7 : nMin =1 Mwin)=

w(nMin)=

- - & 2 .
3b. Ut =NU, +3  girea i Qudtioh

i gt yo~
Replacing n by » -1, u, = ‘/Nn—l +3. ey Gy
Key in the recurrence relation

u(m)=\lu(n-1)+3 .

4. Key in the initial condition: u#(nMin) =1

5. Scroll down the TABLE to check the behaviour of the sequence.

[ [ EECeL FLOAT U0 hcaL Rabzan me.
Er) uln) i n u(n)
1 0 23028
2 - 1 23028
. 12 23028
Thwesfing y 22882 | 13 233028
. 396 1 23028
ond U""-Eﬂ"f)- 6 23021 It 23028
7 233026 16 23028
] 23027 17 233028
s 23028 18 23028
10 23028 13 23028
1 23028 0 23028
In=1 =20

6. Repeat Steps 4 and 5 with u(nMin) =6

ORMA OAT BUTD REAL RADIA P ORMA 0AT R U REAL RAD
SS + FOR &Th [ OR aTh 1
n uln) n uln)
3 0 2.3028
2 3 ) 1 2.3028
3 24495 & i 12 2.36828
y 2334y E 13 2.3028
s 2.3096 1Yy 2.3028
6 23043 15 23028
7 23831 _ ) 16 2.3028 =
8 23028 T 17 | 23028 . "
9 ] 23028 Ui 18 2.3028 )
10 23028 4 e 13 2.3028 —
11~ {23028 20 2.3628
=1 =10




apply this method t
if we apply this method to

=25 even though it is €asy to see that the sequence diverges
given any initial value. rlpt af - )¢

For example,

o find the exact
erroneously obtain the limit to be

Unt =20, 425, we will
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Example 11 [RICJC _L(o)andy=x . The B4 graphs 1ntert
The'diagram shows the graphs of ¥ =3
and x= /3 where a < /f. Find the values of & and /.
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A sequence of real numbers X , X, , X ... satisfiesthe recurrence relation

: . =-31}—(2’") for n=1.

’ -
Determine the behaviour of the sequence using a calculator for the following cases :

Q)
(@) x =4, (b)) x1=-2, (c) x1=28.

Prove algebraically that, if the sequence converges, then it converges to either

a or 5.

(i)

Lo
(iii) By using the graphs of y =§(2 )and y=x, prove that

ifa<x, <f,then a<x,, <x,
if x, <a,then x, <x_, <a
if x5 8 then x, < 2],

(iv) State briefly how the results in part (iii) relate to the behaviours determined in part (i).

f cf\anJc hosk 4 fangtions mode

Solution:

From the GC, = 0-45¢ B :3.31(35f)

(i) From the GC,
(a) the sequence Sty rtrtasey and dierge; vhen x: 4

(b) the sequence S tfly Mureaser and convemes when Y=o

(¢) the sequence s: ne'fs darecgey and ... a
| ' - . s #0458 ey 2 2y,
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il f}l(ln) > 88 " Pk have (- ¥(2Y
=2€ satipes 44, LR agrial)

~- The sequence converges to either o or B.

2,9 .
(iii) lfa<x<ﬁ,wccanseethatthcgraphof Y= 3 (2D lie belr 4, preps

Thatis, & o %<l tten iy <H (2%
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Ifx<a or x> f3, we see thanthe graph of - }L(),\') lieg abow th gophof y o
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For x, <a,itis clear from the graph that x, <x,, <a.
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(iv) When ’xl =4 J we see that X,

This results in

e, -

>

This results ina staes
gecctlf 2 X, <q ,
When X

This results in a Statly decegg,

£€£q/lls i+ “"icﬂ, Hew oty

321 (154)
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Hea X, o
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When o <x< S, we
see that x, > x, > %
%

.- and x, converges

B and he iy extpect Xn1'|>'¥n

\

X <of

<X

L "

g qu"'cqc(_, whith co—waa,w do o

O
<60

When X =
When X, = -2 note that x<a
When X, =2.8, note that

R A

4, note thaE x>p
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2. Press V3.

3. Keyin the €quations:;

L/ =
Y'=§(2A) and ¥, = x .

jl\Y1E§(2x]
EN\Y2EBXN
ENYa=
i\Yq=
{INYs=
;ﬁ\Ys:

ANY 7=
WN\Ys=

| —

| Plott Prot2  prota
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4. Press to see the graphs.

5. Press [2nd|[TRACE).

6. Selects: inte_rsect.

7. Shift the cursor close to the first point of
intersection, press [ENTER] 3 times to get its
coordinates.

8. To get the second point of intersection, repeat
Steps 5 and 6. ' .

9. Shift the cursor close to the second point of
intersection, press [ENTER] 3 times to get its
coordinates.

1:value
2:zero
iB:rminimum
4z maximum
EHintersect
6:dysdx
WS f(x)dx

!

[CALCULRTE

Y1=1,3(27(XD)

- Intersection. .
- K=.H5782237 4

v=us782237. L

"Intersection g B s
“.r;X=3.313178Y4 - - ¥=3.3131784 -
~e REY b, O . POTTDee L, ;AR CERy S—
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Example 12 [Note that the following involves a 1! order linear recurrence relation]

. . 1
The numbers x, satisfy the recurrence relation X = _Ex" +2 forn=12,3,...

: |
Given that x, — 7as n — o » find the exact value of /, and show that X4 —l=—-£(x,, -1).

Show that if 0 < x, </, then ol H( _EJTJ—-
(i) I<x, =5 X -{70 stort from onp side
() x <x </

Solution: Remarks:
Asn— o, x -] and Xpu 2 L. Recall that if a
1 3 sequence converges
Hence, as n — o ,'1 —-51-*-2}051 =2 to some constant /,
= 4 x, — 1 and
L 3% 42 1=‘3‘/ X, ! asn— .
7
4
Xy —I=x,2 -5 For such “show
2 b (5t e be expreqied in demy of Xn) questions”, start
=(~lx i 4 ; from one side,
27 3 J P L usually the L.H.S,
1 5 ) and make use of the
= — x +5 ) funsr? st information given to
T3¢, reach the other side.
=—— .
SN
= —5( '—1) (Shown) wcw 1 r;w]‘lﬂ
porrt.
o (< Xy > Xy €0 |
HOSH<h @ vourp s
,./i- ~An -
@ Yo —1= _5( w=l)200 wx <l Strategy here again
- is to start from what
DX >1 we already know, to
<% Yo Show  %n < Xpg, <@ prove what.is
. o il sl o0 ; = 300V Y < Xatr | needed.
(ll) =_ ( Xnil )<  Xnet > and Xus < e & Xng €S0
=>x,, <l
onL merd
Xy =l =—= ——(x =) miaw*b*’""“
4 £ Yy
4’&:(5) (xn—[)>(xh—l) vx —-1<0
= xn < xn+2

Chapter 10: Recurrence Relations IR
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A sequence o :
fnumbers jg defined by x sl /
nil 2Jc,,+ a+x, forn=1,2,3,...

(i) By consi *
nsiderin Xnt] — .
g Xn+l — x, and using a graphical method, show that if 1 <x» < 3, then

x '——F—-.-

w2 Xy =) Yoy =Xn >0

(i)  Show that if 1 <x, <3, then 1 <xm1<3

(ili) Useth in (i ii
e results in (i) and (ii) to deduce the behaviour of the sequence when x1 = 2.
Show your explanation clearly.
Solution:

AS n—-}CD, xn—>3: X

n+l

n J e
o 251 Yn-(,v‘-‘ Z.)‘a.*,‘qu)fn
4

we have 3 =_3_+ a+3 ; Ofe way to show what is needed
2 is to sketch the graph and look

at the appropriate regions

] 3, '
—zx,,+ ~ ¥,

S E—

'

(i) xn+l _xn =[lxn+ —_3_+xn]_x =
. 2 V 4 "

Bl

3
J~—+x
4

» X

1
y=——x+
Consider the graph ofy=—21x+\f‘%+x 0 /—\ 2
3

bt

, 3

From the graph, if 1 <x <3, theny=—:21—x+ —Z+x >0.
) 1 - Iy

Let x = xn. Hence if 1 <x» <3, then —Ex"+ —?4—+x,r >0

=x, —x,>0=>x,, >x, (shown)

| / 3
(i)  Consider graph of y=5x+ —fo

From the graph, .

1 <x< 3:>1<y=lx+‘f—z+x<3.
2 4

Hence if 1 <x» <3, then 1 <xm1 <3.

([iii) Whenx1=2, 1<x1<3 =x,>x from (i) and 1 <x2<3 from (ii)
1< <3 =x>x andl 2 X Th

Continuing in this manner, x1 <x2 <x3 <.....< 3, hence the sequence increases and

converges to 3.

J
____Chanter 10: Recurrence Re]atiom____ﬂ
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Example 14
3x +5

The numbers X, satisfy the recurrence relation x,,, = "2 for n=1,2,3,....

. (k)
Cﬂ)By considcring_x,,2 =x,.;* and the graphofy =2x? _3,_5 »show thatif x >/, then X,
forall n=1,2, iy

Solution:

Asn—ow, x 5/ and X, =1

Hence, as n — L 1{3x,,2+5 becomes / = EI_'LS
2

Given that x, —/ as =, find the exact value of L

+1 <xn

(a)

So /2 — 3/+5
2
:>212-31—5=0

= @I-5)I+1)=0
::>l=§~ or /=—] (N.A.as/>0)

: . , Kl
xloy 2,2 3%,+5. Recal] = Yy R

n n+1 n 2
2x,”—3x -5
= T
2 Xa>3
From the graph of y =252 _3,_ 5, when x, >1,

2x,’-3x, -5
n n
one sees that —2—_—"» "2 . MU Congyl P
Sox?>x ? :>’x" > X, Of X, <-x

Sketch the graph and look
at the appropriate regions

2
So it is impossible to have X, =% s

Thus x, >x .

Chavtar T Do



