Name

|                                                                                | E              |
|--------------------------------------------------------------------------------|----------------|
| PRELIMINARY EXAM 2008                                                          |                |
| CHEMISTRY<br>Higher 2                                                          | 9746/02        |
| Paper 2 Structured Questions                                                   | 26 August 2008 |
| Candidates answer on the Question Paper.<br>Additional Materials: Data Booklet | 1 hour 30 mins |

## **READ THESE INSTRUCTIONS FIRST**

Write your name and class in the spaces at the top of this page. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working. Do not use correction fluid.

Answer all questions.

You are advised to show all working in calculations. You may use a calculator. A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

| For Exam | niner's Use |
|----------|-------------|
| 1        |             |
| 2        |             |
| 3        |             |
| 4        |             |
| 5        |             |
| 6        |             |
| Total    | 60          |

This document consists of <u>9</u> printed pages and <u>1</u> blank page.

- **1** Explain the following observations:
  - (a) Sulphur has a lower first ionisation energy than phosphorus.

(b) Carbon dioxide and silicon dioxide have widely different melting points.
(c) 2-Nitrophenol has a lower melting point than 4-nitrophenol.

2

(d) The boiling points of hydrogen halides are of the following order.

|     | Compound             | HF               | HCI            | HBr   | HI    | ]         |
|-----|----------------------|------------------|----------------|-------|-------|-----------|
|     | Boiling point/ °C    | 19.4             | -85.1          | -66.4 | -35.6 |           |
|     |                      |                  |                |       |       | -         |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       | [2]       |
|     |                      |                  |                |       |       | [-]       |
| (e) | The bond angle in PC | l₃ is larger tha | an that in As( | Cl₃.  |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       |           |
|     |                      |                  |                |       |       | [2]       |
|     |                      |                  |                |       | [T(   | otal: 10] |

- 2 A 1.00 g sample of steel was dissolved in excess nitric acid. The resulting solution was found to contain manganese(II) ions. On addition of sodium bismuthate, NaBiO<sub>3</sub>, all the manganese(II) ions were oxidised to manganate(VII) ions. After removing any excess bismuthate ions, the resulting purple solution was titrated with a solution containing iron(II) ions of concentration 0.10 mol dm<sup>-3</sup>. 36.00 cm<sup>3</sup> of this solution was required to reach the endpoint, in which iron(II) ions were oxidised to iron(III) ions. (a) What is the oxidation state of bismuth in NaBiO<sub>3</sub>? .....[1] Given that the bismuthate ion is reduced to Bi<sup>3+</sup>, write the half-equation for (b) (i) this reduction reaction. Hence, write an overall balanced equation for the oxidation of (ii) manganese(II) to manganate(VII) by bismuthate ions in acidic solution. ..... [2]
  - (c) Calculate the percentage by mass of manganese in the steel sample.

[3]

(d) (i) Calculate the  $E_{cell}^{\theta}$  for each of the following reactions in the table below and hence deduce whether each reaction can occur under standard conditions.

| Reactants                                        | Products                           | E <sup>θ</sup> <sub>cell</sub> / V | Can reaction occur? (Y/N) |
|--------------------------------------------------|------------------------------------|------------------------------------|---------------------------|
| Mn & SO <sub>4</sub> <sup>2-</sup>               | Mn <sup>2+</sup> & SO <sub>2</sub> |                                    |                           |
| Mn <sup>2+</sup> & SO <sub>4</sub> <sup>2-</sup> | $MnO_4^-$ & $SO_2$                 |                                    |                           |
| Fe <sup>2+</sup> & SO <sub>4</sub> <sup>2-</sup> | Fe <sup>3+</sup> & SO <sub>2</sub> |                                    |                           |

(ii) Using your answers from (d)(i), state and explain whether sulphuric acid is a suitable replacement for nitric acid in this experiment.

- **3** (a) *Paracetamol* is a common analgesic drug often used as a painkiller and for treating mild fever. In a study carried out to determine the rate of removal of *paracetamol* from the body, the reaction was found to have a constant *half-life* of 2.7 h.
  - (i) Sketch a graph to show how the concentration of *paracetamol* changes with time.



time / h

(ii) A boy took a dose of *paracetamol* (two 500 mg tablet) for his fever. How long does it take for the *paracetamol* in his body to decrease to 125 mg?

- (iii) An independent study shows that the removal of *paracetamol* from the body could be accelerated by using enzymes. On the same axes in (a)(i), sketch and label clearly the graph expected for the enzyme-catalysed reaction.
- (iv) The enzyme-catalyst only works well under certain conditions in the body. Suggest one condition which would affect the action of the enzyme-catalyst.

.....

(b) The following reaction scheme involved a halogeno compound **V**.

$$CI \xrightarrow{\frown} CH_2CH_3 \xrightarrow{\text{step I}} V \xleftarrow{HCI} CI \xrightarrow{\frown} CH=CH_2$$

(i) Draw the structural formula of **V**.

(ii) Suggest reagents and conditions required for step I.

(iii) Draw diagrams to illustrate the type of stereoisomerism exhibited by V.

(iv) When V is boiled under reflux with excess ethanolic silver nitrate, a white precipitate is formed. What is the mass of the precipitate formed if 1.75 g of V is used in the reaction?

> [5] [Total: 10]

- **4** (a) A hydrocarbon **W** contains 92.3 % carbon. On complete combustion, 0.005 mol of **W** produced 1.76 g of CO<sub>2</sub>.
  - (i) Determine the molecular formula of **W**.

- (ii) Given that W forms a white precipitate on heating with acidified potassium manganate(VII) and 1 mol of W reacts with 1 mol of bromine gas in tetrachloromethane, draw the displayed formula of W.
- (iii) State the type of hybridisation shown by the carbon atoms of **W** and draw the hybrid orbitals.

**W** forms a monochlorinated product **X** that is able to exhibit stereoisomerism.

- (iv) State the type of stereoisomerism shown by **X**.
- (v) Draw and clearly label the two stereoisomers of **X**.

 (b) Nickel metal, used in the reaction described in (a)(ii), is a transition metal. Explain the data given below.

|    | Atomic Size/nm | Melting Point / °C |  |
|----|----------------|--------------------|--|
| Ni | 0.115          | 1453               |  |
| Са | 0.197          | 842                |  |

[2] [Total: 10]  $SO_2CI_2(g) \Longrightarrow SO_2(g) + CI_2(g)$ 

(a) 6.7 g of gaseous SO<sub>2</sub>Cl<sub>2</sub> was placed into a 1 dm<sup>3</sup> vessel and the temperature was held constant at 375 K. What is the initial pressure of SO<sub>2</sub>Cl<sub>2</sub> (in atm) in the vessel before dissociation? (1 atm =  $1.01 \times 10^5$  Pa)

[1]

(b) Using your answer in (a), write a  $K_p$  expression in terms of the partial pressure of SO<sub>2</sub>,  $p_{SO_2}$ , only. Hence, determine the partial pressures of SO<sub>2</sub>, Cl<sub>2</sub>, and SO<sub>2</sub>Cl<sub>2</sub> at equilibrium.

[3]

(c) If 1.0 atm of Cl<sub>2</sub> was initially present along with the 6.7 g of SO<sub>2</sub>Cl<sub>2</sub>, give the partial pressure terms of Cl<sub>2</sub> and SO<sub>2</sub>Cl<sub>2</sub> in terms of the partial pressure of SO<sub>2</sub>,  $p_{SO_2}$ , only and hence determine the corresponding equilibrium partial pressures of the gases.

**6** (a) (i) An organic compound **Y** has the molecular formula  $C_9H_{12}O_2$ . The following tests were conducted to deduce the structure of **Y**.

 ${\bf Y}$  burns with a sooty flame and reacts with aqueous NaOH but not Na<sub>2</sub>CO<sub>3</sub>. Deduction:

.....

**Y** rotates plane polarised light. Deduction:

.....

**Y** gives a yellow precipitate when warmed with aqueous alkaline  $I_2$ . Deduction:

.....

**Y** decolourises 2 mol of aqueous  $Br_2$  to give steamy fumes and a white precipitate. Deduction:

.....

**Y** reacts with hot excess concentrated sulphuric acid to give **Z**,  $C_9H_{10}O$ , which can exist as stereoisomers. Deduction:

.....

Deduce the structural formulae of compounds Y and Z.

**Y**:

**Z**:

(b) (i) Compound **Y** can undergo chlorination with hot thionyl chloride, SOCl<sub>2</sub> in the presence of pyridine. What is the advantage of this method for organic synthesis as compared to using PCl<sub>5</sub>?

.....

.....

(ii) By considering the reaction in b(i), predict and explain the sign of  $\Delta S$ . (Assume all the organic compounds are in liquid state.)

.....

(iii) How will  $\Delta G^{\theta}$  for this reaction change with increasing temperature, given that it is an endothermic reaction? Hence predict the effect of temperature on the spontaneity of this reaction.

.....

.....

[5] [Total: 11]

**END OF PAPER**