

20

Name:	_ ()	Date:
Class: 4E			vi si bre

Practical 12: QA4 - 5074 Nov 2015

You are provided with solution **R** and solid **S**. Carry out the following tests and record your observations in the table. You should test and name any gas evolved.

test		
no.	test	observations
	(a) To 1 cm depth of R in a test-tube, add a few drops of aqueous silver nitrate.	Pale yellow ppt formed.
1	(b) Add dilute nitric acid to the mixture from (a).	Pale yellow ppt remained insoluble in nitric acid. [2]
2	To 1 cm depth of aqueous iron(III) chloride in a test-tube, add an equal volume of R .	Yellow solution turns brown.
3	(a) To 1 cm depth of R in a test-tube, add an equal volume of dilute sulfuric acid and then one or two drops of S .	Yellow solution is formed. \(\sqrt{a_1} \tag{I_2} \)
	(b) To the mixture from (a), add an equal volume of S and allow to stand for a few minutes.	Yellow solution turns dark brown. On standing, black ppt is formed. [2]
4	(a) To 1 cm depth of iron(II) sulfate in a boiling tube, add an equal volume of S .	Pale green solution turns brown. Effervescence is observed.
	(b) Add aqueous sodium hydroxide to the mixture from (a) until no further change occurs.	Reddish-brown ppt formed; insoluble in excess aqueous sodium hydroxide. [2]
5	To 1 cm depth of aqueous acidified potassium manganate(VII) in a test-tube, add an equal volume of S .	Purple acidified KMnO ₄ turns colourless.
	(a) To 1 cm depth of S in a test-tube, add a small amount of copper powder.(b) Add an equal volume of aqueous	Reddish-brown solid is insoluble in S. Some reddish-brown solid dissolves to
6	ammonia to the mixture from (a) .	form a blue solution. Effervescence is observed. Gas produced relights a glowing splint. Gas produced is oxygen.
		[4]

Conclusion:

Consider the results of the experiments you have performed from tests 1 to 6.

(a) Identify the **anion** present in **R**. Give evidence from your observations to support your conclusion.

anion iodide ion / I

evidence <u>Based on test 1, a yellow precipitate was formed when aqueous acidified</u> silver nitrate was added.

(b) State the role of **S** in test **4(a)** and in test **5**. Explain your answer.

role of S in test 4(a) oxidising agent

explanation Pale green Fe²⁺ ions in FeSO₄ has been oxidised by S to form brown Fe³⁺ ions.

role of **S** in test **5** reducing agent

explanation <u>oxidising agent purple acidified KMnO₄ has been reduced to form a colourless solution</u>

Planning:

(c) An aqueous solution contains the following cations – Pb²⁺, Ca²⁺, Fe²⁺. In the space below, briefly describe the steps to prove that all the cations are present in the mixture.

To the aqueous solution, add excess dilute hydrochloric acid. If a white precipitate is formed, this would indicate the presence of Pb²⁺ ions in lead(II) chloride. Filter the mixture to obtain lead(II) chloride as the residue. The filtrate would contain a mixture of excess hydrochloric acid, calcium ions and iron(II) ions.

To the remaining filtrate, add excess dilute sulfuric acid. If a white precipitate is formed, this would indicate the presence of Ca²⁺ ions in calcium sulfate. Filter the mixture to obtain calcium sulfate as the residue. The filtrate would then contain a mixture of excess hydrochloric acid, excess sulfuric acid and iron(II) ions.

To the remaining mixture, add excess aqueous sodium hydroxide / aqueous ammonia. If a dirty-green precipitate is formed, this would indicate the presence of Fe²⁺ ions in iron(II) hydroxide.

.....[5]

Revision Exercise:

The following table shows the conclusions that a student made after carrying out tests with a white crystalline salt T. Fill in the observations for each test.

test	observations	conclusions
Dissolve a portion of T in		Zn ²⁺ or Pb ²⁺ ions may be
distilled water. Add a few drops		present.
of aqueous sodium hydroxide to		
the solution of T.		
Continue adding aqueous		Zn ²⁺ or Pb ²⁺ ions may be
sodium hydroxide until it is in		present.
excess.		
Dissolve a portion of T in		Zn ²⁺ or Pb ²⁺ ions maybe
distilled water. Add a few drops		present.
of aqueous ammonia to the solution		
of T.		
Continue adding aqueous		Zn ²⁺ ions are present.
ammonia until it is in excess.		