No.	Solution	Remarks
1(a)(i)	Upthrust is the <u>net upward force</u> acting on a body submerged in a	[1] for correct
	fluid due to the <u>difference in pressure at the top and bottom</u> of the	answer
	Immersed portion of the body.	
1(a)(ii)	Upthrust	
	4.4.	[1] for correct
	$U = -\frac{V}{5} \rho_{\text{sea}} g$	equation and
	$4(7.5.10^{-2})(4.02.10^{-3})(0.94)$	numerical
	$=\frac{-1}{5}(7.5 \times 10^{-5})(1.05 \times 10^{-5})(9.81)$	Substitution
	= 606.3	[1] for correct
	≈ 606 N	answer
1(a)(iii)	U = T + mg	[1] for correct
	T = U - mg	numerical
	= 606.3 - (8.0)(9.81)	substitution
	= 527.8	
	= 530 N (shown)	
1(b)(I)		
	sea surface	
	direction	
	of current	
	τ	
	······	
	sea bed	
	[1] for correct <i>T</i> , <i>U</i> and <i>D</i>	
		T
1(b)(ii)	Resolving forces horizontally,	[4] for compact
	$T \sin 35^{\circ} = D$ (1)	equations by
	Possiving forces vertically	resolution of
	T cos $35^{\circ} + M = 11$	forces
	$1 \cos 33 + vv = 0$	
	$T = \frac{U - VV}{200 25^{\circ}} (2)$	
	COS 35°	
	Substitute (2) into (1),	

Answers to 2021 JC2 Preliminary Examination Paper 3 (H2 Physics)

No.	Solution	Remarks
	$D = (U - W) \tan 35^{\circ}$ $= \begin{bmatrix} a & Va - ma \end{bmatrix} \tan 35^{\circ}$	[1] for correct numerical
	$= \left[(1.03 \times 10^3)(7.5 \times 10^{-2})(9.81) - (8.0)(9.81) \right] \tan 35^\circ$ = 475.7 = 476 N	[1] for correct answer
2(a)(i)	Work done per unit mass in bringing a small test mass from infinity to that point.	[1] for correct answer
2(a)(ii)	Potential at infinity is taken to be zero.	[1]
	Due to the attractive nature of the gravitational force, work done by an external agent to bring any mass from infinity to that point is always negative. Hence the potential at any point must always be negative.	[1]
2(b)	$+1.0 \phi$ gravitational $+0.5 \phi$ $+0.5 \phi$ -0.5ϕ -1.0ϕ	 [1] for correct shape [1] for at least 3 correct plots (i.e. <i>r</i>, 2<i>r</i> and 4<i>r</i>)
2(c)(i)	Gravitational force provide the centripetal force for the spacecraft to move in circular orbit. $\frac{GMm}{R^2} = \frac{mv^2}{R}$ $\therefore v = \sqrt{\frac{GM}{R}}$ $= \sqrt{\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})}{4(640000)}}$ $= 3953$ $\approx 4.0 \times 10^3 \text{ m s}^{-1} \text{ (shown)}$	[1] for statement[1] for correct equation and numerical substitution

No.	Solution	Remarks
2(c)(ii)	$\Delta \boldsymbol{U} = \boldsymbol{U}_{f} - \boldsymbol{U}_{i}$	[1] for correct
1.	-(-GMm) - (-GMm)	equation and
	$-\left(-\frac{1}{R_{i}}\right)^{-}\left(-\frac{1}{R_{i}}\right)$	substitution
	$(6.67 \times 10^{-11})(6.0 \times 10^{24})(8600)) (6.67 \times 10^{-11})(6.0 \times 10^{24})(8600))$	Substitution
	$= \left(-\frac{3(6.4 \times 10^{6})}{3(6.4 \times 10^{6})}\right)^{-} \left(-\frac{4(6.4 \times 10^{6})}{4(6.4 \times 10^{6})}\right)$	
	$= -4.48 \times 10^{10} J$	[1] for correct
		answer
2(c)(ii)		
2.	$V_f = \sqrt{\frac{GM}{P}}$	
	$= \sqrt{\frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})}{(6.0 \times 10^{24})}}$	
	$V = 3(6.4 \times 10^{\circ})$	
	$= 4565 \approx 4.57 \times 10^3 \text{ m s}^{-1}$	
	$\Delta KF = \frac{1}{2}mv_{1}^{2} - \frac{1}{2}mv_{2}^{2}$	
	2 2 2	[1] for correct
	$=\frac{1}{-}(8600)(4565^2-3953^2)$	method
	2	
	$= 2.24 \times 10^{10} \text{ J}$	[1] for correct
	and there is more loss in GPE than gain in KE, the total energy	explanation
	decrease.	
3(a)	The first law of thermodynamics states that the increase in internal	[1] correct
	and the work done on the system	definition
	and the work done on the system.	
3(b)(i)	$\Delta U = Q + W$	[1] correct
	For adiabatic process, $Q = 0$	answer
	$\Delta U = W = -500 \text{ J}$	
• (1.) (11)		
3(b)(II)	Since internal energy decreases, temperature of gas decreases.	[1] correct
3(c)(i)	$\Delta U = Q + W$	
	For constant volume process. $W = 0$	
	3	[4] for compart
	$Q = \Delta U = \frac{1}{2} nR\Delta T$	[1] for correct
	$\frac{3}{3}$ (0, 5) (0, 0, 4) (500, -000)	substitution
	$=\frac{1}{2}(2.5)(8.31)(500-300)$	
	= 6232.5	[1] for correct
	= 6230 J	Q
	molar heat capacity - 6232.5	
	$\frac{1}{(2.5)(200)}$	[1] for correct
	= 12.465	molar heat
	$= 12.5 \text{ J mol}^{-1} \text{ K}^{-1}$	capacity
	- 12.0 0 1101 1	

No.	Solution	Remarks
3(c)(ii)	For the constant pressure process, in addition to the increase in internal energy, work is done by the gas hence more heat is supplied for the same change in temperature. This will result in a larger molar heat capacity.	[1] for work done [1] for more heat supplied
4(a)	$F = \frac{V_{\text{bottom}} - V_{\text{top}}}{V_{\text{top}}}$	
	- d	
	$1.40 \times 10^4 = \frac{v_{\text{bottom}} - 140}{0.028}$	[1] for correct substitution
	$V_{\text{bottom}} = 532 \text{ V}$	[1] answer
4(b)(i)	F - qF	
	$m_{\text{electron}} = qL$	
	qE	
	$a = \frac{1}{m_{\text{electron}}}$	
	$(1.60 \times 10^{-19})(1.4 \times 10^{4})$	[1] correct
	- 9.11×10 ⁻³¹	substitution
	$= 2.45884 \times 10^{15}$	
	$= 2.5 \times 10^{10} \text{ m s}^{-1} (2 \text{ s.t.})$	
4(b)(ii)	Consider horizontal motion,	
	$s_x = u_x t + \frac{1}{2} a_x t^2$	
	$0.120 = 5.0 \times 10^7 t$	[1] correct
	$t = 2.4 \times 10^{-9} \text{ s}$	[1] answer
4(c)	Consider vertical motion,	
	$s_y = u_y t + \frac{1}{2} a_y t^2$	
	$=\frac{1}{2}(2.5\times10^{15})(2.4\times10^{-9})^{2}$	[1] correct substitution
	$= 7.2 \times 10^{-3}$ m	[1] answer
	Since <u>0.72 cm is less than 1.4 cm</u> (distance away from the bottom plate), the electron does not hit the plates, thus emerging from between the plates at the opposite end.	[1] correct conclusion
	Or To hit the plate, the minimum vertical displacement from straight- through direction = 1.4 cm	
	$s_y = u_y t + \frac{1}{2} a_y t^2$	[1] correct
	$\frac{-1}{14 \times 10^{-2}} - \frac{1}{(25 \times 10^{15})}t^2$	substitution
	$-\frac{1}{2}(2.5 \times 10^{-1})^{1}$	[1] answer
	$t = 3.3 \times 10^{-3}$ s	

No.	Solution	Remarks
5(c)	The upwards magnetic force is smaller than the downwards electric force.	[1] for explanation
	Hence the path curves downwards. (do not accept circular path)	[1] for description
6(a)	The root-mean-square value of an alternating current is the <u>value</u> of <u>steady direct current</u> which would <u>produce the same mean</u> <u>power</u> as the alternating current <u>in a given resistance</u> .	[1] answer
6(b)(i)	Period, $T = 20 \text{ ms}$ Frequency, $f = \frac{1}{T} = \frac{1}{20 \times 10^{-3}} = 50 \text{ Hz}$	[1] answer
6(b)(ii)	Peak value = 3.0 A	[1] answer
6(b)(iii)	Root-mean-square value $= \frac{\text{peak value}}{\sqrt{2}}$ $= \frac{3.0}{\sqrt{2}}$	
	= 2.1 A	[1] answer
6(c)	power / W 45 45 45 0 10 20 30 40 time / ms Peak power, $P_0 = I_0^2 R$ $= 3.0^2 \times 5.0$ = 45 W	[1] correct graph[1] correct value of peak power

No.	Solution	Remarks
6(d)	$\frac{I_s}{I_s} = \frac{N_p}{N_p}$	
	$I_p = N_s$	
	$\frac{I_s}{I_s} = \frac{300}{I_s}$	[1] substitution
	3 6000	[1] answer
	$I_{s} = 0.15 \text{ A}$	
7(a)(i)	A photon is a <u>quantum of electromagnetic radiation with energy</u>	[1] for correct
	of the wave.	answei
7(a)(ii)	The energy required by the bydrogen atom for it to transit from the	[1] for correct
<i>'</i> (a)(ii)	ground state to its first excited state is 10.2 eV.	answer
7(b)(i)	$E_3 \rightarrow E_1$:	
	$\Delta E = E_3 - E_1$	
	$= -9.0 \times 10^{-19} - \left(-24.6 \times 10^{-19}\right)$	
	$= 15.6 \times 10^{-19} J$	
	$\Delta E = hf$	[1] for correct
	$f - \frac{\Delta E}{\Delta E} - \frac{15.6 \times 10^{-19}}{10^{-19}}$	expression and
	$h = 6.63 \times 10^{-34}$	numerical
	$=2.353\times10^{15}$	[1] for correct
	$\approx 2.35 \times 10^{15}$ Hz	answer
7(b)(ii)	$\Delta E_{31} = \Delta E_{32} + \Delta E_{21}$	
	$\Delta \boldsymbol{E}_{21} = \Delta \boldsymbol{E}_{31} - \Delta \boldsymbol{E}_{32}$	
	$\frac{hc}{hc} = h(f_{31} - f_{32})$	[1] for correct
	hc hc	method and
	$\lambda = \frac{1}{h(f_{31} - f_{32})}$	numerical
	3.00×10^{8}	Substitution
	$=\frac{1}{2.35\times10^{15}-1.09\times10^{15}}$	
	$= 2.381 \times 10^{-7}$	[1] for correct answer
	≈ 238 nm	
7(c)	The accelerated electrons strike the anode metal and knock out	[1]
	<u>electrons from the inner shells of the target atoms</u> , causing the electrons in the innermost shell to be vacant.	
	An electron in an outer shell transits from a higher energy level to <u>fill up the vacancy in the inner shell</u> , and an X-ray photon can be produced.	[1]
	Since the energy transitions between discrete energy levels are fixed, the <u>energy gaps produce photons of fixed energies</u> .	[1]

No.	Solution	Remarks
8(a)	Simple harmonic motion is an oscillatory motion in which the acceleration of an object is directly proportional to the displacement of the object from its equilibrium position, and the acceleration is always directed towards that position.	 [1] for a proportional to x [1] for direction of a
8(b)(i)	$F_{\text{result}} = -k(e + x) + k(e - x)$ $= -ke - kx + ke - kx$ $= -2kx$	[1] for correctequation[1] for correctexpression forresultant force
	$F_{\text{result}} = ma$	
	-2kx = ma	[1] for correct
	$a = -\frac{2k}{m}x$ (shown)	substitution
8(b)(ii)	₂ 2k	
	$\omega^{-} = \frac{1}{m}$	
	$\omega = \sqrt{\frac{2k}{m}}$	
	$=\sqrt{\frac{2(50)}{0.600}}$ = 12.91	[1] for correct calculation of ω
	$f = \frac{\omega}{2\pi}$ = 2.05 Hz	[1] for correct value of <i>f</i>
8(b)(iii)	$V_{\rm max} = \omega X_0$	[1] for correct
	$1.4 = (12.91) x_0$	equation and
	$x_0 = 0.11 \mathrm{m}$	substitution [1] for correct answer
8(b)(iv)	Total energy,	[1] for correct
1.	$E_{\rm T} = \frac{1}{2} m \omega^2 x_0^2$	equation and substitution
	$= \frac{1}{2} (0.600) \left[\frac{2(50)}{0.600} \right] (0.11)^{2}$ = 0.61 J	[1] for correct answer

