
Hwa Chong Institution H2 Computing

1

8 Searching and Sorting Algorithms

Learning Outcome

In the last chapter, we learnt to search and sort a list using the methods provided in Python.
Here, we will look closer into the various algorithms, explaining how the search and sort are
done behind the scene and how efficient the algorithms are.

8.1 Searching Algorithms

A searching algorithm intends to find a particular element in a list. This targeted element may
not exist in the list, may appear once or multiple times. We call this targeted element the key.

8.1.1 Linear Search
As the name implies, linear search basically searches the items in the list one-by-one.

The function LinearSearch requires two parameters: the list and the key. The algorithms
begins at index 0, scans every element in the list until the key is found or the list is exhausted.
If the key is found, the function returns the index of the matched item in the list; otherwise, the
value −1 is returned. Here are two examples for illustration.

A: 8 3 6 2 6

1. key = 6
Search the list from the beginning, returning the index of the first occurrence of element 6.

key = 6

 A[0] A[1] A[2] A[3] A[4]
 return value = 2

8 3 6 2 6

Fundamental Algorithms
 Implement sort algorithms: insertion sort, bubble sort, quicksort, merge sort
 Use examples to explain sort algorithms
 Implement search algorithms: linear search, binary search, hash table search
 Use examples to explain search algorithms
 Compare and describe the efficiencies of the sort and search algorithms using Big-O

notation for time complexity (worst case). Exclude: space complexity

Implementing Algorithms
 Implement sort programs: insertion sort, bubble sort, quicksort, merge sort
 Implement search programs: linear search, binary search, hash table search

Hwa Chong Institution H2 Computing

2

def LinearSearch (A, key):
#Search the list A for a match with key
#Return the position of the key if found, or -1 otherwise.

 pos = 0 # start position to search
 found = False

 while (not found and pos < len(A)):
 if A[pos] == key:
 found = True
 else:
 pos = pos + 1

 if found: # return index of matching item
 return pos
 else: # search failed, return -1
 return -1

2. key = 9 , start = 0, n = 5.

Start at the first element and search the list for the number 9. Since it is not found, return the
value −1.

key = 9
n = 5

 A[0] A[1] A[2] A[3] A[4]

 return value = −1

Linear Search Implementation

8.1.2 Binary Search

The linear search applies to any list. If the list is ordered, an algorithm, called the binary
search, provides an improved search technique.

Your experience in looking up a number in a large phone directory is a model for the algorithm.
Given the name, you move to an earlier or later page in the phone book depending on the
relative location of the person’s name in the alphabet. For instance, if the person’s name begin
with “R”, and you are in the “T’s” you move to an earlier page. The process continues until
you get a match or discover that the name is not in the book.

A related idea applies to searching an ordered list. We go to the middle of the list and look for
a quick match of our key with the midpoint value. If we fail to find a match, we look at the
relative size of the key and the midpoint value and then move to the lower or upper half of the
list. In general, if we know how the data are ordered, we can use that information to shorten
the search time.

8 3 6 2 6

Hwa Chong Institution H2 Computing

3

The following steps describe the algorithm. The indices at the ends of the list are low = 0 and
high = n − 1 , where n is the number of elements in the list.

1. Compute the index of the array’s midpoint.
mid = (low + high) / 2

2. Compare the value at this midpoint with the key.

 If a match occurs, return the index mid to locate the key.

 key

 low mid high

 If (A[mid] = = key)
 return mid

 If key < A[mid], the key must lie within the lower range (left half) since the
list is ordered. The new boundaries are low and high = mid − 1.

 key

low mid high

Search Lower Range, index from low to mid − 1

 If key > A[mid], the key must lie within the upper range (right half) since the
list is ordered. The new boundaries are low = mid + 1 and high.

 key

low mid high
Search Upper Range, index from mid + 1 to high

3. The algorithm refines the location of a match by halving the length of the interval
in which key can exist and then executing the same search algorithm on the smaller
sublist.

4. Eventually, if the key is not in the list, low will exceed high and the algorithm
returns the failure indicator of −1 (match not found).

Hwa Chong Institution H2 Computing

4

Let’s illustrate with an array A and search for the key = 33.

 0 1 2 3 4 5 6 7 8

A −7 3 5 8 12 16 23 33 55

A −7 3 5 8 12 16 23 33 55
low = 0

 high = 8
 0 1 2 3 4 5 6 7 8

 mid mid = (0+8)/2 = 4
 33 > A[mid]

A −7 3 5 8 12 16 23 33 55
low = 5
high = 8

 0 1 2 3 4 5 6 7 8
 mid mid = (5+8)/2 = 6

 33 > A[mid]

A −7 3 5 8 12 16 23 33 55
low = 7
high = 8

 0 1 2 3 4 5 6 7 8
 mid mid = (7+8)/2 = 7

 33=A[mid]
 Match!

Note that binary search requires 3 comparisons while linear search would take 8 comparisons.

Another example for the same array but search for key = 34. The first two comparison will be
exactly the same with the above example. Let’s look at the last comparison

A −7 3 5 8 12 16 23 33 55
low = 7
high = 8

 0 1 2 3 4 5 6 7 8
 mid mid = (7+8)/2 = 7

 34 > A[mid]

A −7 3 5 8 12 16 23 33 55
low = 8
high = 8

 0 1 2 3 4 5 6 7 8
 mid = (8+8)/2 = 8
 34 < A[mid]

Now we have key < A[mid] and this leads to high = mid − 1 = 7. Here low exceeds high and
the algorithm will return the failure indicator of −1 (match not found).

Note that binary search requires 4 comparisons while linear search would take 9 comparisons.

Hwa Chong Institution H2 Computing

5

Binary Search Implementation

8.1.3 Hash Table Search

In an array or list, items are inserted subsequently into the data structure, starting from the first
index. Linear search and binary search compares the targeted item by a sequence of trial-and-
error comparisons.

Here we introduce another data structure, hash table, where the location of each item is
determined by a hash function of the item itself. This makes hash table search at the designated
location of the item and thus less comparisons.

Hash Function

As an illustration, suppose that up to 25 integers in the range 0 through 999 are to be stored in
a hash table, This hash table can be implemented as an integer array table in which each array
element is initialized with some dummy value, such as −1. If we use each integer i in the set
as an index, that is, we store i in table[i].

The function h defined by h(i) = i that determines the location of an item i in the hash table is
called a hash function.

def BinarySearch (A, key):
#Search the ordered list A for a match with key
#Return the position of the key if found, or -1 otherwise.

found = False # initialization
 low = 0

high = len(A) - 1

 while (not found) and (low <=high):
 mid = (low + high) // 2 # mid index of the sublist

if key == A[mid]: # have a match
 found = True
 if key < A[mid]: # go to lower sublist
 high = mid-1
 if key > A[mid]: # go to upper sublist
 low = mid+1

 if found: # return index of matching item
 return mid

else: # i.e. low > high
 return - 1 # search failed, return -1

Hwa Chong Institution H2 Computing

6

To determine whether a particular integer number has been stored, we need only check if
table[number] is equal to number. only one location needs to be examined. This method is thus
very time efficient, but it is surely not space-efficient. Only 25 of the 1000 available locations
are used to store items, leaving 975 unused locations; only 2.5 percent of the available space is
used, and so 97.5 percent is wasted!

Because it is possible to store 25 values in 25 locations, we might try improving space
utilization by using an array table with capacity 25. Obviously, the original hash function h(i)
= i can no longer be used. Instead, we might use

 h(i) = i modulo 25

or in Python,
 def h(i):
 return (i % 25) # division by 25 method

because this function always produces an integer in the range 0 through 24. The integer 52 thus
is stored in table[2], since h(52) = 52 % 25 = 2. Similarly, 129, 500, 273, and 49 are stored in
locations 4, 0, 23, and 24 respectively.

 Hash Table

table[0] 500
table[1] −1
table[2] 52
table[3] −1
table[4] 129
table[5] −1

. .

. .

. .

. .

. .

. .
table[23] 273
table[24] 49

Collision Strategies

There is an obvious problem with the preceding hash table, namely, that collisions may occur.
For example, if 77 is to be stored, it should be placed at location h(77) = 77 % 25 = 2, but this
location is already occupied by 52. In the same way, many other values may collide at a given
position, for example, 2, 27 and 102; and, in fact, all integers of the form 25k + 2 hash to
location 2. Obviously, some strategy is needed to resolve such collisions.

Hwa Chong Institution H2 Computing

7

Linear Probing (or Linear Probe Open Addressing)
One simple strategy for handling collisions is known as linear probing. In this method, a linear
search of the table begins at the location where a collision occurs and continues until an empty
slot is found in which the item can be stored.

Thus, in the preceding example, when 77 collides with the value 52 at location 2, we simply
put 77 in position 3; to insert 102, we follow the probe sequence consisting of locations 2, 3,
4, and 5 to find the first available location and thus store 102 in table[5].

If the search reaches the bottom of the table, we continue at the first location. For example, 123
is stored in location 1, since it collides with 273 at location 23, and the probe sequence 23, 24,
0, 1 locates the first empty slot at position 1.

 Hash Table

table[0] 500
table[1] 123
table[2] 52
table[3] 77
table[4] 129
table[5] 102

. .

. .

. .

. .

. .

. .
table[23] 273
table[24] 49

Hash Table Search with Linear Probing

To determine if a specified value is in this hash table, we first apply the hash function to
compute the position at which this value should be found. There are three cases to consider.

First, if this location is empty, we can conclude immediately that the value is not in the table.

Second, if this location contains the specified value, the search is immediately successful.

In the third case, this location contains a value other than the one for which we are searching,
because of the way that collisions were resolved in constructing the table. In this case, we begin
a “circular” linear search at this location and continue until either the item is found or we reach
an empty location or the starting location, indicating that the item is not in the table.

In the linear probe scheme, whenever collisions occur, the colliding values are stored in
locations that should be reserved for items that hash directly to these locations. This approach
makes subsequent collisions more likely, thus compounding the problem.

Hwa Chong Institution H2 Computing

8

Chaining (or Chaining with Separate Lists)
A better approach, known as chaining, uses a hash table that is an array of linked lists that
store the items. To illustrate, suppose we wish to store a collection of names, we might use an
array table of 26 linked lists, initially empty, and the simple hash function h(name) =
ord(name[0]) – ord(‘A’) ; that is, h(name) is 0 if name[0] is ‘A’, 1 if name[0] is ‘B’, ,
25 if name[0] is ’Z’.

Thus, for example, “Adams” and “Dorry” are stored in nodes pointed to by table[0] and
table[3], respectively.

 Hash Table

table[0] Adams Null

table[1] Null

table[2] Null

table[3] Dorry Null

. .

. .

. .

table[25] Zack Null

When a collision occurs, we simply insert the new item into the appropriate linked list. For
example, since h(“David”) = h(“Dorry”) = ord(‘D’) – ord(‘A’) = 3, a collision occurs when
we attempt to store the name “David”, and thus we add a new node containing this name to the
linked list pointed to by table[3] :

 Hash Table

table[0] Adams Null

table[1] Null

table[2] Null

table[3] Dorry David Null

. .

. .

. .

table[25] Zack Null

Hash Table Search with Chaining
Searching such a hash table is straightforward. We simply apply the hash function to the item
being sought and then use one of the search algorithms for linked list.

Hwa Chong Institution H2 Computing

9

Chaining method is generally faster than Linear Probing method because only items that hash
to the same table location are searched. Furthermore, linear probe addressing assumes a fixed-
length table, whereas in chaining with separate lists, entries in the hash table are dynamically
allocated. The list size is limited only by the amount of memory. The primary disadvantage of
chaining is the space required to allocate the additional node pointer field. In general, the
dynamic structure of separate chaining makes it the preferred choice for hashing.

A factor on the design of a hash table is the selection of the hash function. The behavior of the
hash function obviously affects the frequency of collisions. For example, the preceding hash
function in the example is not a good choice because some letters occur much more frequently
than others as first letters of names. Thus the linked list of names beginning with ‘T’ tends to
be much longer than containing names that begin with ‘Z’. This clustering effect results in
longer search times for T-names than for Z-names.

A better hash function that distributes the names more uniformly throughout the hash table
might be the ”average” of the first and last letters in the name:

h(name) = (ord(first letter) + ord(last letter)) / 2

or one might use the “average” of all the letters. The hash function must not, however, be so
complex that the time required to evaluate it makes the search time unacceptable.

Tutorial 8A

1. (a) N95P2Q10

The following list of twenty-one integers is stored in ascending order in an array:

 8, 12, 17, 18, 24, 27, 28, 35, 38, 39, 49, 63, 64, 68, 70, 71, 77, 84, 88, 89, 91

If the list is searched by means of a binary search, state which elements would be
 accessed, and in what order,

 (i) When searching for the number 88 (which is present), and
 (ii) when searching for 65 (which is not present) ? [2]

 (b) N02P1Q6
 Describe the difference between a binary search and a linear search. [2]

2. SP02P1Q2

The following pseudo-code algorithm describes one method of finding an arbitrary
name in an alphabetically ordered array of N unique names.

set first to 1
set last to N

Hwa Chong Institution H2 Computing

10

repeat
 set mid to the integer part of (first + last)/2

if the midth name precedes the wanted name then
 set first to mid + 1

else
 set last to mid - 1

endif
until first > last or midth name is the wanted name

 (a) If 142 names are stored in the array, and HAMMOND is the 44th name, state

the elements of the array that are examined when searching for HAMMON. [4]

 (b) If a search is made for a name that is not in the array, what is the largest number

of elements that might need to be examined before one could say that the name
is not present? Explain how you arrive at your answer. [3]

3. N09P1Q3

Below is a recursive algorithm for finding a value, SearchItem, in an ordered array, X.

Search(Low, High)
Mid =(Low+High) div 2
If X(Mid) = SearchItem then output “Found” : exit
If X(Mid) > SearchItem then Search(Low, Mid-1)
 Else Search(Mid+1, High)
End Search

Note: the div operation returns an integer value after division e.g. 7 div 2 = 3

Using the above algorithm:
(a) Explain what is meant by a recursive algorithm. [1]
(b) Describe what might occur during execution with an incorrectly written

recursive routine. [3]

Array X has 15 elements and the subscript start at 1.

(c) If the algorithm was used to search the array X for the value stored at X(3), state

the calls to Search as the recursion executes. [4]
(d) The algorithm does not handle the case where SearchItem is not present in X.

Indicate what changes need to be made to Search to rectify this problem. [3]
(e) For this method of searching, state the maximum number of comparisons for

array X, justify your answers. [5]

4. Using a hash table with eleven locations and the hashing function h(i) = i % 11, show

the hash table that results when the following integers are inserted in the order given:
26, 42, 5, 44, 92, 59, 40, 36, 12, 60, 80 .Assume that collisions are resolved using

(a) linear probing.

(b) chaining.

Hwa Chong Institution H2 Computing

11

Assignment 8A

1. J94P1Q9

The diagram shows how a collection of records is stored in two arrays. The keys are in
ascending order.

 KEY INFORMATION
START Abigail START {data about Abigail}
 Arthur {data about Arthur}
 Boris {data about Boris}
 . .
 . .
 . .
 . .
 . .
FINISH Zebedee FINISH {data about Zebedee}

The following two sections of pseudocode represent alternative procedures for a search
to find the position of a particular record.

procedure SearchOne (First, Last)
 if First > Last then {record is not present}
 else if WantedKey = Key[First] then {record found at position First}
 else SearchOne (First+1, Last)

procedure SearchTwo (First, Last)
 if First > Last then {record is not present}
 else Middle = (First + Last) div 2

 if WantedKey = Key[Middle] then {record found at position Middle}
 else if WantedKey > Key[Middle] then SearchTwo(Middle+1, Last)

 else SearchTwo (First, Middle-1)

(a) The eleven keys held in the array on one occasion are Anne, Bryn, Cleo, Dora,
Eric, Fran, Grag, Hugh, Iisa, John and Kate. Illustrate the operation of the two
procedures by showing the path followed when WantedKey is Hugh and each
procedure is called initially with the parameter values 1, 11. (You should show
each procedure call made, with its parameter values, and each key value tested.)

[8]
(b) Each procedure works irrespective of the number of keys. Discuss how you

would decide which procedure to use for a particular application. [2]

2. We want to use linear search to count the number of occurrence of a key in a list. When

the key does not exist in the list, it is 0 occurrence. Write a recursive function
RecSearch(A, key, start) which requires three parameters, the list A, the key to
be found, and the start index to search in the list. This function returns the number of
occurrence of this key in the list.

3. Write a recursive function binSearch (A, low, high, key) which searches a
 sorted list A, A[low] A[high] , for a match with key using binary search. Return
 the index of the matching item or −1 if the key is not found.

Hwa Chong Institution H2 Computing

12

8.2 Sorting Algorithms

The ordering of items in a list is important for many applications. For instance, an inventory
list may sort records by their part numbers, a dictionary maintains words in alphabetical order
to allow quick access to a word. In this section we consider the problem of sorting a list ,
 X1, X2, X3, , Xn

that is, arranging the list elements so that they are in ascending order
X1 <= X2 <= X3 <= <= Xn

or in descending order
X1 >= X2 >= X3 >= >= Xn

The sort functions that we develop here operate on a list of integers and uses a swap function
to exchange the positions of two items in the list.

def swap(A, i, j):
exchange the items at position i and j

temp = A[i]
 A[i] = A[j]
 A[j] = temp

We now introduce classical sorting algorithms that cover the main techniques of in-place
sorting in ascending order. Although the algorithms are not efficient for practical use for a large
number of data items, they illustrate the main approaches for sorting of an array.

8.2.1 Bubble Sort

For an array A with n elements, the bubble sort requires up to (n−1) passes. For each pass, we
compare adjacent elements and exchange their values when the first element is greater than the
second element. At the end of the each pass, the largest element has “bubbled up” to the end
of the current sublist. For instance, after pass 0 (1st pass) is complete, the tail of the list (A[n−1]
) is sorted and the front of the list remains unordered.

Let’s look at the details of the passes. In the process, we maintain a record of the last index that
is involved in an exchange. The variable lastExchagneIndex is used for this purpose and is set
to 0 at the start of each pass.

Pass 0 compares adjacent elements (A[0], A[1]), (A[1], A[2]), , (A[n−2], A[n−1]).
For each pair (A[j], A[j+1]), exchange the values if A[j] > A[j+1] and update
lastExchangeIndex to j. At the end of the pass, the largest element is in A[n−1] and the value
lastExchangeIndex indicates that all elements in the tail of the list from
A[lastExchangeIndex+1] to A[n−1] are in sorted order.

For subsequent passes, we compare adjacent elements in the sublist A[0] to
A[lastExchagneIndex]. The process terminates when lastExchangeIndex = 0. The algorithm
makes a maximum of (n−1) passes.

Hwa Chong Institution H2 Computing

13

We illustrate the bubble sort algorithm with the five-element array A = 50, 20, 40, 75, 35.

 A[0] A[1] A[2] A[3] A[4]

Pass 0 (the 1st pass): 50, 20, 40, 75, 35 Exchange 50 and 20

 20, 50, 40, 75, 35 Exchange 50 and 40

 20, 40, 50, 75, 35 50 and 75 are ordered

 20, 40, 50, 75, 35 Exchange 75 and 35

 20, 40, 50, 35, 75 75 is the largest element
 lastExchagneIndex = 3

Since lastExchangeIndex is not 0, the process continues.
In pass 1, we scan the sublist of elements A[0] to A[lastExchangeIndex] = A[3].

 A[0] A[1] A[2] A[3] A[4]

Pass 1 (the 2nd pass): 20, 40, 50, 35, 75 20 and 40 are ordered

 20, 40, 50, 35, 75 40 and 50 are ordered

 20, 40, 50, 35, 75 Exchange 50 and 35

 20, 40, 35, 50, 75 50 is the largest element
 lastExchangeIndex = 2

The new value of lastExchagneIndex becomes 2, and the process continues.
In pass 2, we scan the sublist A[0] to A[lastExchangeIndex] = A[2].

 A[0] A[1] A[2] A[3] A[4]

Pass 2 (the 3rd pass): 20, 40, 35, 50, 75 20 and 40 are ordered

 20, 40, 35, 50, 75 Exchange 40 and 35

 20, 35, 40, 50, 75 40 is the largest element
 lastExchangeIndex = 1

Hwa Chong Institution H2 Computing

14

The resulting value of lastExchangeIndex is 1.
In pass 3, we scan the sublist A[0] to A[lastExchangeIndex] = A[1].

The single comparison of 20 and 35 leads to no exchanges. lastExchangeIndex is 0, and the
process terminates.

 A[0] A[1] A[2] A[3] A[4]

 Pass 3 (the 4th pass): 20, 35, 40, 50, 75 20 and 35 are ordered

 20, 35, 40, 50, 75 Ordered List
 lastExchangeIndex = 0

Bubble Sort Implementation:

8.2.1 Insertion Sort

The insertion sort is similar to a familiar paper-shuffling process that orders a list of names.
The registrar puts each person’s name on a card and then rearranges the cards in alphabetical
order by sliding a card forward in the stack until it finds the correct location. As the process
goes on, the cards at the front of the stack are sorted and those at the rear of the stack are waiting
to be processed.

def bubbleSort (A):
sort a list, A, using bubble sort algorithm

 i = len(A) – 1 # index of last element in the sublist

 while i > 0: # continue until no exchanges are made

 lastExchangeIndex = 0

 # scan the sublist A[0] to A[i]
 for j in range(i + 1):

 # exchange a pair and update lastExchangeIndex
 if A[j] > A[j+1]:
 swap (A, j, j+1)
 lastExchangeIndex = j

 # set i to index of the last exchange

continue sorting the sublist A[0] to A[i]
 i = lastExchangeIndex

Hwa Chong Institution H2 Computing

15

We describe the process with the list of five integer values: A = 50, 20, 40, 75, 35.

 A[0] A[1] A[2] A[3] A[4]
 50 20 40 75 35

 50 Start with 50

Processing 20: 20 50 Insert 20 in location 0; 50 moves to location 1

Processing 40: 20 40 50 Insert 40 in location 1; 50 moves to location 2

Processing 75: 20 40 50 75 Element 75 is OK

Processing 35: 20 35 40 50 75 Insert 35 at location 1;
 The tail of the list shifts to the right

Insertion Sort Implementation:

The function insertionSort is passed a list A and the size of the list n.

Let’s look at pass i (1 <= i <= n−1) . The sublist A[0] to A[i−1] is already sorted in ascending
order. The pass assigns A[i] to the list. Let A[i] be the target and move down the list, comparing
the target with items A[i−1], A[i−2], and so forth. Stop the scan at the first element A[j] that is
less than or equal to target or at the beginning of the list (j = 0). As we move down the list,
slide each element to the right (A[j] = A[j−1]). When we have found the correct location for
A[i], insert it at location j.

def insertionSort(A, n):
sort an list, A, of n integer elements using insertion sort

 for i in range(1, n):
 # i identifies the sublist A[0] to A[i]

 # index j scans down list from A[i−1]
 # looking for correct position to locate target
 target = A[i]
 j = i

 # locate insertion point by scanning downward
 # as long as target < A[j-1] and
 # we have not encountered the beginning of the list
 while j > 0 and target < A[j-1]:

 # shift elements up to make room for insertion
 A[j] = A[j-1]
 j = j – 1

 # the location is found; insert the target
 A[j] = target

Hwa Chong Institution H2 Computing

16

8.2.3 Quick sort

It is the fastest known sorting algorithm. Like most sorting algorithm, the Quick sort technique
is derived from familiar experiences. To sort a large stack of papers by name, we can split the
papers into two piles with some pivot character such as K separating the list. All names less
than or equal to K go in one pile and the rest go into the second pile. We then take each pile
and split it into two parts. For instance, in the following figure, the partition points are ‘F’ and
‘R’. We continue to subdivide the piles into smaller and smaller stacks.

 A – Z

 Partition at K
 A – K L - Z

 Partition at F Partition at R

 A – F G – K L – R S – Z

The Quick sort algorithm uses the partition approach to sort a list. The algorithm determines a
pivot value to split the list into two parts. It separates the elements into parts within the list. We
introduce the algorithm with an example and then add the details.

Assume that list A contains 10 integer values:

 A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

 A = 800, 150, 300, 600, 550, 650, 400, 350, 450, 700

Scanning Phase
We scan the entire range of elements in the list A[0] to A[9]. The range extends from low = 0
to high = 9 with a middle index at mid = 4. The first pivot value is A[mid] = 550 and the
algorithm separates the elements of A into two sublists Slow and Shigh.

Sublist Slow is the lower sublist and will contain the elements that are less than or equal to the
pivot. The higher sublist Shigh will contain the elements that are greater than the pivot.

Since we know that the pivot will ultimately end up in Slow, we temporarily move it to the low
end of the range and exchange its value with A[0] (A[low]). This allows us to scan the sublist
A[1] to A[9] using two indices left and right. The variable left is initially set at index 1 (low +
1) and is responsible for locating elements for sublist Slow. Variable right is set at index 9 (high)
and locates elements for sublist Shigh. The goal of the pass is to identify the elements in each of
the sublists.

 A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

550 150 300 600 800 650 400 350 450 700

 left right

Hwa Chong Institution H2 Computing

17

The creativity of Quick sort derives from the interaction between the two indices as they scan
the list. left moves up the list, whereas the index right moves down the list. We move left
forward looking for an element A[left] that is greater than the pivot. At that point the scan stops
and we prepare to relocate the element to the upper sublist.

Before the relocation can occur, we move the index right downward in the list and wait for it
to identify an element that is less than or equal to the pivot. We then have two elements that
are in the wrong sublists and can exchange them.

 swap (A, left, right) # swap misplaced partners

The process continues until left and right pass each other with right = 5, left = 6. At this point,
right has first entered into the lower list, which contains the elements less than or equal to pivot.
We hit the separation point between the two lists and have identified the final location for pivot.
In the example, swap 600 and 450, 800 and 350, 650 and 400.

 A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

550 150 300 600 800 650 400 350 450 700

 right left

We then exchange the pivot A[0] with A[right].

 swap (A, 0, right)

The result creates sublist A[0] – A[4] whose elements are less than those in sublist A[6] – A[9].
The pivot (550) at A[5] creates two sublists that are approximately one half the size of the
original list. These two sublists are processed using the same algorithm in which we call the
recursive phase.

 A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

400 150 300 450 350 550 650 800 600 700

 A[0] – A[4] A[6] – A[9]

Recursive Phase Process the two sublist Slow (A[0] – A[4]) and Shigh (A[6] – A[9]) using the
same methods.

Hwa Chong Institution H2 Computing

18

Sublist Slow :
The range of the sublist is 0 to 4 with low = 0 and high = 4, mid = 2, and pivot is A[mid] = 300.
Exchange pivot and A[low] and assign initial value to left and right:

 left = 1 = low+1
 right = 4 = high

 left stops at index 2 (A[2] > pivot)
 right stops at index 1 (A[1] < pivot)

 Initial Values After Scan
 A[0] A[1] A[2] A[3] A[4] A[0] A[1] A[2] A[3] A[4]

300 150 400 450 350 300 150 400 450 350

 left right right left

Since right < left, the process halts and right is the separate point between two smaller sublists
A[0] and A[2] – A[4]. Complete the process by exchanging A[right] = 150 and A[low] = 300.
Note that the location of pivot leaves us with a one-element sublist and a three-element sublist.
The recursive process terminates on an empty or single-element sublist.

 A[0] A[1] A[2] A[3] A[4]

 150 300 400 450 350

 A[0] A[2] – A[4]

Sublist Shigh :
The range of the sublist is 6 to 9 with low = 6 and high = 9, mid = 7, and pivot is A[mid] = 800.
Exchange pivot and A[low] and assign initial value to left and right:

 left = 7 = low+1
 right = 9 = high

 left stops when it passes the end of the list
 right remains at its initial position

 Initial Values After Scan
 A[6] A[7] A[8] A[9] A[6] A[7] A[8] A[9]

800 650 600 700

800 650 600 700
end of

list

 left right right left

Hwa Chong Institution H2 Computing

19

Since right < left, the process halts and right locates the insertion point for pivot. Complete the
process by exchanging A[right] = 700 and A[low] = 800. Note that the location of pivot leaves
us with a three-element sublist and an empty sublist. The recursive process terminates on an
empty or single-element sublist.

 A[6] A[7] A[8] A[9]

700 650 600 800

 A[6] – A[8]

Completing the Sort
Process sublist 400, 450, 350 (A[2] – A[4])
 Pivot = 450
The scanning process arranges the element in order 350, 400, 450. One more recursive call is
needed with the two-element sublist 350, 400.

Process sublist 700, 650, 600 (A[6] – A[8])
 Pivot = 650
After scanning, the elements are arranged in the order 600, 650, 700. The values 600 and 700
constitute two one-element sublists.

The Quick sort is complete and the resulting list is sorted.

 A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

150 300 350 400 450 550 600 650 700 800

Quick Sort Implementation

The recursive algorithm partitions a list A[low] to A[high] about a pivot, which is selected from
the middle of the list:
 pivot = A[mid]; # mid = (low+high)/2

After exchanging the pivot value with A[low], set the indices left = low+1 and right = high to
point at the beginning and end of the list.

The algorithm manages the two indices. left first moves up the list as long as it does not exceed
right and points at elements that are less than or equal to pivot.

 # index left traverses the elements that are less than or equal to pivot
 while (left <= right and A[left] <= pivot)
 left = left + 1 # go to the next element

After left is positioned, right moves down the list as long as it refers to elements that are greater
than pivot.

Hwa Chong Institution H2 Computing

20

scan down upper sublist; stopping when right identifies an element <= pivot.
while (A[right] > pivot)
 right = right −1

On conclusion of this loop, if left < right, the indices identify two elements that are in the wrong
sublists. The values are exchanged.

 # exchange a large element in the lower sublist with

a smaller element from the higher sublist
swap (A, left, right)

The swapping of elements terminates when right is less than left. At this point, right identifies
the top of the left sublist that contains the elements less than or equal to pivot. The index right
is the pivot location in the list.
Retrieve the pivot value from A[low]: swap (A, low, right)

def split (A, low, high):
split the list into two sublists and rearranges the list
so that the pivot is properly positioned at A[pos]

get the mid index and assign its value to pivot
middle = (low + high) / 2

 pivot = A[middle]

 # exchange the pivot with the first item
 swap (A, middle, low)
 left = low + 1 # index for left search
 right = high # index for right search

 while left <= right:
 # search from left for element > pivot
 while left <= right and A[left] <= pivot:
 left = left + 1

 # search from right for element <= pivot
 while A[right] > pivot:
 right = right - 1

 # interchange elements if left and right
 # have not passed each other
 if left < right:
 swap (A, left, right)

 # end of searches; place pivot in correct position
 pos = right
 A[low] = A[right]
 A[pos] = pivot

 return pos # pos is the final position of pivot

Hwa Chong Institution H2 Computing

21

Quicksort uses recursion to process the sublists. After locating the pivot to split the list, we
recursively call Quicksort with parameters low to right−1 (for lower sublist) and right+1 to
high (for upper sublist).

The stopping condition occurs when a sublist has fewer than two elements since a one-element
or empty list is ordered.

def quickSort (A, low, high):
sort array elements A[low], , A[high]

if low < high: # list has more than one element
 # split into two sublists;

pos is the final position of pivot
 pos = split (A, low, high)

quickSort (A, low, pos-1) # quick sort left sublist
 quickSort (A, pos+1, high)# quick sort right sublist

else list has 0 or 1 element and requires no sorting

Hwa Chong Institution H2 Computing

22

8.2.4 Merge Sort

Merge sort algorithm can be described recursively as follows: The algorithm divides the list
into two halves and applies a merge sort on each half recursively. After the two halves are
sorted, the algorithm then merges them.

The figure below illustrates a merge sort of a list of eight elements [2 9 5 4 8 1 6 7]. The list
is split into 2 sublist [2 9 5 4] and [8 1 6 7]. Apply a merge sort on these two sub-lists recursively
to split [2 9 5 4] into [2 9] and [5 4] and [8 1 6 7] into [8 1] and [6 7]. This process continues
until the sub-list contains only one element. For example, list [2 9] is split into the sub-list [2]
and [9]. Since [2] contains a single element, it cannot be further split. Now merge [2] with [9]
into a new sorted list [2 9] and [5] with [4] into a new sorted list [4 5]. Merge [2 9] with [4 5]
into a new sorted list [2 4 5 9] and finally merge [2 4 5 9] with [1 6 7 8] into a new sorted list
[1 2 4 5 6 7 8 9].

The recursive call continues dividing the list into sub-lists until each sub-list contains only one
element. The algorithm then merges these small sub-lists into larger sorted sub-lists until one
sorted list results.

The merge sort algorithm is implemented as follows:

def mergeSort(arr, low, high):
 if low < high:
 mid = (low + high)//2
 # Sort first and second halves
 mergeSort(arr, low, mid)
 mergeSort(arr, mid+1, high)
 merge(arr, low, mid, high)

14

13

12

11

10

9

7

6

5

4

3

2

1

conquer

divide

merge

merge

merge

split

split

split

2 9 5 4 8 1 6 7

2 9 5 4 8 1 6 7

2 9 5 4 8 1 6 7

2 9 5 4 8 1 6 7

2 9 4 5 8 1 6 7

2 4 5 9 1 6 7 8

1 2 4 5 6 7 8 9

8

Hwa Chong Institution H2 Computing

23

def merge(arr, low, mid, high):

 num = high - low + 1 #get number of elements
 temp = [0] * num #create temp array to store merged result

 # initialize
 left = low # initial index of first subarray
 right = mid + 1 # initial index of second subarray
 index = 0 # initial index of merged array

 # merge both halves
 while left <= mid and right <= high:
 if arr[left] <= arr[right]: #left element is smaller
 temp[index] = arr[left]
 left += 1
 else: #right element is smaller
 temp[index] = arr[right]
 right += 1
 index += 1 #increment index by 1

 #copy remaining elements of first subarray to temp
 while left <= mid:
 temp[index] = arr[left]
 left += 1
 index += 1

 #copy the remaining elements of second subarray to temp
 while right <= high:
 temp[index] = arr[right]
 right += 1
 index += 1

 #copied back into original array
 for i in range(0, num):
 arr[low+i] = temp[i]

Hwa Chong Institution H2 Computing

24

The figures below illustrate how to merge the two sublists [2 4 5 9] and [1 6 7 8]

temp:

arr:

right left

2 4 5 9 1 6 7 8

1 2

left

index index

temp:

arr:

right

2 4 5 9 1 6 7 8

1 2 4

left

index index

left

index

temp:

arr: 2 4 5 9 1 6 7 8

1

left right

index

right

left

temp:

arr:

right

2 4 5 9 1 6 7 8

1 2 4 5

left

index index

temp:

arr:

right

2 4 5 9 1 6 7 8

1 2 4 5 6

left

index index

right

right

temp:

arr:

right

2 4 5 9 1 6 7 8

1 2 4 5 6 7

left

index index

temp:

arr:

right

2 4 5 9 1 6 7 8

1 2 4 5 6 7 8

index index

right left

mid high low

temp:

arr: 2 4 5 9 1 6 7 8

left

index

right

Hwa Chong Institution H2 Computing

25

Tutorial 8B

1. For the following array A, show A after each pass using bubble sort and insertion

sort to arrange the elements in ascending order

i 0 1 2 3 4 5
A[i] 30 50 70 10 40 60

2. For the following array A, use the quick sort algorithm to sort the elements in
 ascending order. Select the pivot from the midpoint in the list. During each pass, list all
 exchanges that will move a corresponding pair of elements in the lower and upper
 sublist. List the ordering of elements after each pass.

i 0 1 2 3 4 5 6 7 8 9

A[i] 45 20 50 30 80 10 60 70 40 90

3. N04P2Q6(b,c)
(a) Explain how a quicksort can be used to sort the employee numbers in a
 transaction file into order, smallest first, using the following numbers as an
 example:

6111 3217 2684 9163 7412 [5]

(b) Two methods were considered to sort the transaction file, a bubble sort or a
 quick sort. With reference to the nature of the file to be sorted explain how a
 decision can sensibly be made. [2]

4. Use diagrams to show the various stages of MergeSort for the following lists of
numbers:

13, 22, 57, 99, 39, 64, 57, 48, 70

low mid high

index index

temp:

arr:

right

2 4 5 9 1 6 7 8

1 2 4 5 6 7 8 9

left left

Hwa Chong Institution H2 Computing

26

Assignment 8B

1. J01P1Q10(b)

In the following algorithm, NUMBER(i) is the value of the ith data item in the array NUMBER.

 LAST = NUMBER OF VALUES IN ARRAY NUMBER
 COUNT = 0
 START = 0
 REPEAT

 FLAG = 0
 COUNT = COUNT + START
 REPEAT
 INCREMENT COUNT
 IF NUMBER(COUNT) < NUMBER(COUNT+1) THEN
 FLAG = 1
 TEMP = NUMBER(COUNT)
 NUMBER(COUNT) = NUMBER(COUNT+1)
 NUMBER(COUNT+1) = TEMP
 ENDIF
 UNTIL COUNT = LAST – 1
 COUNT = 0
 INCREMENT START
 UNTIL FLAG = 0

END

The array NUMBER contains the value 5, 6, 1, 3.

(i) State the values stored in each of the variables START, COUNT and FLAG
after the algorithm is executed.

(ii) Give the state of the array NUMBER after the algorithm is executed.

(iii) Explain the significance of the variable FLAG.

[8]

2. N03P1Q4
An array, X, of integers has the following values stored in it:

X[1] X[2] X[3] X[4] X[5]

56 34 24 50 43

(a) Using a trace table with columns labelled i, j, X[1], X[2], X[3], X[4] and X[5]
 show how the contents of array X are sorted into order when the following
 algorithm for a Bubble sort is followed:

set i = 5
repeat

Hwa Chong Institution H2 Computing

27

 for j = 1 to i-1 do
 if X[j] > X[j+1] then
 swap X[j] and X[j+1]
 endif
 endfor

set i = i -1
 until i = 1

[8]
(b) Rewrite the code so that the sort process terminates as soon as possible when
 the array is fully sorted. [3]

(c) Give two different sets of test data that could be used to test the modified routine.
 Explain the purpose of each set of data. [4]

(d) When deciding which sort method to use in a program give three factors that

need to be considered. [3]

3. N94P2Q11
(a) Give a detailed algorithm for a function min(a, b, c) which returns a value of

1, 2 or 3 to indicate which of the three values a, b or c is the least. [5]

(b) For values of N from 1 to 100, each of the arrays A[N], B[N] and C[N] contains
 a list of positive numbers, the values within each array increasing as N increases.
 Describe in detail an efficient algorithm making use of the function min(a, b, c)
 to merge the three arrays and print all 300 numbers in increasing order. [6]

4. J86P1Q3
Two sequential files A and B contain records of a fixed length with key field values in
ascending order. The two files are to be merged to form a single sequential file C
containing the same records with the key field values in ascending order. Each of the
files A and B is terminated by a dummy record with a huge key field value, represented
by hugekey. File C is to be terminated similarly. Apart from the dummy records, all the
key field values are supposed to be different from each other; it is therefore an error if
any record in file A has the same key field value as any record in file B. Describe in
detail an algorithm to carry out the merge. [8]

Hwa Chong Institution H2 Computing

28

8.3 Big-O Notation

After learning all the searching and sorting algorithms, we need to analyze their performance
so that we know which one to choose for a particular problem. The performance can be
quantified in terms of time and space complexity, i.e. how much runtime and how large
memory space each algorithm takes.

However, the running time for a searching algorithm definitely increases with the size of the
list to be searched and also depending on some condition of the list (e.g. whether it has been
sorted). So the common practice is that we study how the time cost changes with respect to its
input size n in the worst case performance, and this is called Big-O Notation. Before moving
onto searching and sorting algorithms, let’s look at the Big-O Notation for some simple
programs.

Constant Complexity: O(1)
Complexity of the program remains constant regardless of the input size.

Linear Complexity: O(n)
The time cost grows linearly and proportionally with the input size.

Quadratic Complexity: O(n2)

Clearly, linear search requires O(n) comparisons of the items in the list. Binary search halves
the list in each iteration, so it requires O(log2n) comparisons. But don’t fortget that binary
search requires input to be an ordered list. For hash table, in ideal circumstances without
collision, we found the item in one step, i.e. O(1). When collision occurs, it requires O(n).
Hence a good hash function is very important. On the other hand, hash table may require
more spaces as well. Each searching algorithm has its own pros and cons.

def get_last(List):
 return List[-1]

def get_sum(List):
 total = 0
 for item in List:
 total = total + item
 return total

def multi_table(n):
#generate the multiplication table
 for i in range(1, n + 1):
 for j in range(1, n + 1):
 print(i * j, end = ' ')
 print()

Hwa Chong Institution H2 Computing

29

Sorting algorithms are more complicated and the nested loops makes both bubble sort and
insertion sort quadratic complexity with O(n2). This is not a problem with small data sets, but
with hundreds or thousands of elements, this becomes very significant.

Bubble sort does perform better for partially sorted lists because it is able to detect when a list
is sorted and does not continue making unnecessary passes through the list. As a general sorting
scheme, however, it is very inefficient because of the large number of interchanges that it
requires. In fact, it is the least efficient of the sorting schemes.

Insertion sort also is too inefficient to be used as a general-purpose sorting scheme. However,
the low overhead that it requires makes it better than bubble sort.

Quick sort and merge sort take O(n log2n) comparisons and are very efficient general-purpose
sorting schemes and especially for large lists.

