

Instructions: Write your name and CT group on all the work you hand in. Answer **all** questions.

1 The positive integers *a*, *b*, *c* and *d* satisfy the equation

$$(ad-bc)^2 = (a+b)(c+d).$$

(a) Show that there are positive integers x, y and z, with x and y coprime, such that $a+b=x^2z$ and $c+d=y^2z$. [4]

(b) Find a quadratic equation satisfied by $\frac{y}{x}$ and hence, or otherwise, prove that 4ac+1 is a perfect square. [6]

(a)	Let $z = gcd(a+b,c+d)$. Then clearly z is a positive integer, and we have also
[4]	a+b=pz, $c+d=qz$, where p and q are coprime. Substituting these into the equation
	we have $(ad - bc)^2 = pqz^2 \Rightarrow \left(\frac{ad - bc}{z}\right)^2 = pq$. Since p and q are coprime and their
	product is a perfect square, they must be perfect squares themselves. Hence there are
	positive coprime integers x and y such that $p = x^2$, $q = y^2$ and thus positive integers x,
	y and z such that $a+b=x^2z$ and $c+d=y^2z$.
(b)	We note that
[6]	$z = \frac{ad - bc}{ad - bc} = \frac{a + b}{ad - bc} = \frac{c + d}{ad - bc}.$
	xy x^2 y^2
	So we have $\frac{y^2}{x^2} = \frac{c+d}{a+b}$, $\frac{y}{x} = \frac{ad-bc}{a+b}$. Note also that
	$a\frac{y^{2}}{x^{2}} - \frac{y}{x} = \frac{a(c+d)}{a+b} - \frac{ad-bc}{a+b} = \frac{ac+bc}{a+b} = c$
	which is the quadratic equation we are looking for.
	Solving the quadratic equation we have
	$\frac{y}{1\pm\sqrt{1+4ac}}$
	x - 2a
	Since x and y are coprime positive integers, $\sqrt{1+4ac}$ has to be an integer (otherwise it
	is irrational since a and c are positive integers), and thus $4ac+1$ is a perfect square.

2 Let *u* and *v* be quadratic functions of *x* and let

$$y = \frac{u}{v}$$
.

(a) Use mathematical induction to prove that

$$v\frac{d^{n+2}y}{dx^{n+2}} + (n+2)\frac{dv}{dx}\frac{d^{n+1}y}{dx^{n+1}} + \binom{n+2}{2}\frac{d^2v}{dx^2}\frac{d^ny}{dx^n} = 0,$$
[8]

for $n \ge 1$.

(b) Now assume that $v = (\alpha - x)^2$ for some real number α and, for all positive integers *n*, define

$$z_n = \frac{(\alpha - x)^{n+2}}{n!} \frac{\mathrm{d}^n y}{\mathrm{d} x^n}.$$

Use the result of (a) to prove that $z_1, z_2, z_3, ...$ is an arithmetic progression. By writing y as partial fractions, or otherwise, show that the common difference is $u(\alpha)$. [7]

(a)
[8] Let
$$P_n$$
 be the statement $v \frac{d^{n+2}y}{dx^{n+2}} + (n+2) \frac{dv}{dx} \frac{d^{n+1}y}{dx^{n+1}} + {\binom{n+2}{2}} \frac{d^2v}{dx^2} \frac{d^n y}{dx^n} = 0$ for positive integers *n*.
From $y = \frac{u}{v} \Rightarrow yv = u$ and thus differentiating with respect to *x* we have
 $\frac{dy}{dx}v + y\frac{dv}{dx} = \frac{du}{dx}$.
Differentiating once more with respect to *x* we have
 $\frac{d^2y}{dx^2}v + 2\frac{dy}{dx}\frac{dv}{dx} + y\frac{d^2v}{dx^2} = \frac{d^2u}{dx^2}$.
Differentiating once more with respect to *x* and using the fact that *u* is a quadratic expression implies that $\frac{d^3u}{dx^3} = 0$, (since $\frac{du}{dx}$ linear, $\frac{d^2u}{dx^2}$ constant)
 $\frac{d^3y}{dx^3}v + \frac{d^2y}{dx^2}\frac{dv}{dx} + 2\frac{d^2y}{dx^2}\frac{dv}{dx} + 2\frac{dy}{dx}\frac{d^2v}{dx^2} + \frac{dy}{dx}\frac{d^2v}{dx^2} + y\frac{d^3v}{dx^3} = \frac{d^3u}{dx^3} = 0$.
This simplifies to
 $\frac{d^3y}{dx^3}v + 3\frac{d^2y}{dx^2}\frac{dv}{dx} + 3\frac{dy}{dx}\frac{d^2v}{dx^2} + y\frac{d^3v}{dx^3} = 0$.
Since $(n+2) = \binom{n+2}{2} = 3$ when $n = 1$, the statement P_1 is true.
Now suppose P_n is true for some positive integer *n*, i.e. for some positive integer *n*, $v\frac{d^{n+2}y}{dx^{n+2}} + (n+2)\frac{dv}{dx}\frac{d^{n+1}y}{dx^{n+1}} + \binom{n+2}{2}\frac{d^2v}{dx^2}\frac{d^n y}{dx^n} = 0$.

Differentiating once more with respect to x we have

$$v \frac{4^{n+2}y}{dx^{n+3}} \frac{dv}{dt} \frac{d^{n+2}y}{dx^n} + (n+2) \frac{dv}{dt} \frac{d^{n+2}y}{dx^{n+2}} + (n+2) \frac{d^{1}y}{dt^n} \frac{d^{n+1}y}{dt^n} = 0$$

 $\Rightarrow v \frac{4^{n+3}y}{dt^{n+3}} + (n+3) \frac{dv}{dt} \frac{d^{n+2}y}{dt^{n+2}} + \left(n+2 + \binom{n+2}{2}\right) \frac{d^{1}y}{dt^2} \frac{d^{n+1}y}{dt^{n+1}} = 0$
since $\frac{d^{3}y}{dt^{n+3}} = 0$ as v is a quadratic.
Since
 $n+2 + \binom{n+2}{2} = n+2 + \frac{(n+2)(n+1)}{2}$
 $= \frac{(n+2)(2+n+1)}{2}$
 $= \frac{(n+2)(2+n+1)}{2} = \frac{(n+3)(n+2)}{2}$
We thus have $v \frac{d^{n+3}y}{dt^{n+3}} + (n+3) \frac{dv}{dt} \frac{d^{n+2}y}{dt^{n+2}} + \binom{n+3}{2} \frac{d^{2}v}{dt^{2}} \frac{d^{n+1}y}{dt^{n+1}} = 0$. Since P_1 is true and
 $P_n \Rightarrow P_{n+1}$, by Mathematical Induction, P_n is true for all positive integers n .
(b)
To show z_1, z_2, z_3, \dots is an arithmetic progression, we will show that
 $z_{n+2} - z_{n+1} - z_n$ or equivalently $z_{n+2} - 2\frac{(\alpha - x)^{n+3}}{(n+2)!} \frac{d^{n+2}y}{dt^{n+2}} + \binom{n+2}{n!} \frac{d^{n+3}y}{dt^{n+1}} = 0$. From the definition of
 $z_n = \frac{(\alpha - x)^{n+2}}{n!} \frac{d^{n+2}y}{dt^{n+2}} - 2(\alpha - x)(n+1)! \frac{d^{n+1}y}{dt^{n+1}} + (\alpha - x)^{n+2}} \frac{d^{n}y}{dt^{n}}$
Here, we note that with the choice of $v = (\alpha - x)^{2}$, we have
 $\frac{d^{3}y}{dt^{2}} = 2$. Therefore
 $z_{n+2} - 2z_{n+1} + z_n$
 $= \frac{(\alpha - x)^{n+2}}{(n+2)!} \left[v \frac{d^{n+2}y}{dt^{n+2}} + \frac{dn}{dt} \frac{d^{n+1}y}{dt^{n+1}} + \frac{(n+2)(n+1)}{2} 2(\frac{d^{n}y}{dt^{n}}]$
Here, $v_1 = 2t_{n+1} + z_n$
 $= \frac{(\alpha - x)^{n+2}}{(n+2)!} \left[v \frac{d^{n+2}y}{dt^{n+2}} + \frac{dn}{dt} (n+1) \frac{d^{n+1}y}{dt^{n+1}} + \frac{(n+2)(n+1)}{2} (2) \frac{d^{n}y}{dt^{n}} = 0$. from (a)
Hence z_1, z_2, z_3, \dots is an arithmetic progression.

$$y = \frac{u}{v} = \frac{u}{(\alpha - x)^2}. \text{ Since } u \text{ is a quadratic, we can write } y = A + \frac{B}{(\alpha - x)} + \frac{C}{(\alpha - x)^2}.$$

Thus $y = \frac{A(\alpha - x)^2 + B(\alpha - x) + C}{(\alpha - x)^2} = \frac{u}{(\alpha - x)^2}.$
Substituting $x = \alpha$ we have $C = u(\alpha)$.
We also have

$$\frac{dy}{dx} = \frac{B}{(\alpha - x)^2} + \frac{2C}{(\alpha - x)^3} \Longrightarrow \frac{d^2y}{dx^2} = \frac{2B}{(\alpha - x)^3} + \frac{6C}{(\alpha - x)^4}.$$

The common difference of the arithmetic progression is
 $z_2 - z_1 = \frac{(\alpha - x)^4}{2!} \frac{d^2y}{dx^2} - \frac{(\alpha - x)^3}{1!} \frac{dy}{dx}$
 $= \frac{(\alpha - x)^4}{2} \left(\frac{2B}{(\alpha - x)^3} + \frac{6C}{(\alpha - x)^4}\right) - (\alpha - x)^3 \left(\frac{B}{(\alpha - x)^2} + \frac{2C}{(\alpha - x)^3}\right)$
 $= (\alpha - x)B + 3C - (\alpha - x)B - 2C$
 $= C = u(\alpha)$
as required.

[END OF PAPER]