

The shaded region R bounded by the curve y = -x, the line y = -x and the x-axis is rotated about the x-axis through 360° . Find the volume of the solid formed, leaving your answer to 2 decimal places. [4]

- 2 (i) Solve the inequality $\frac{x^2 ax a}{x a} \ge a$, where a is a positive real constant, leaving your answer in terms of a. [4]
 - (ii) Hence, by using a suitable value for a, solve the inequality

$$\frac{4e^{2x} - e^x - 1}{4e^x - 1} \ge \frac{1}{4}$$

leaving your answer in exact form.

- 3 The parametric equations of a curve C are x = at, $y = at^3$, where a is a positive constant.
 - (i) The point P on the curve has parameter p and the tangent to the curve at point P cuts the y-axis at S and the x-axis at T. The point M is the midpoint of ST. Find a Cartesian equation of the curve traced by M as p varies.
 [5]
 - (ii) Find the exact area bounded by the curve C, the line x = 0, x = 3 and the x-axis, giving your answer in terms of a.

[3]

4 It is given that $y = \sin^{-1} x \cos^{-1} x$, where $-1 \le x \le 1$.

(i) Show that
$$\sqrt{1-x^2} \frac{dy}{dx} = \cos^{-1} x - \sin^{-1} x$$
. [1]

(ii) Show that
$$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = -2$$
 [2]

- (iii) Hence find the exact value of A, B and C if y can be expressed as $Ax + Bx^2 + Cx^3$, up to (and including) the term in x^3 . [4]
- (iv) A student used (iii) to estimate that $\sin^{-1}(0.8)\cos^{-1}(0.8) \approx 0.8A + 0.8^2B + 0.8^3C$. Explain, with working, if his estimate is a good one. [1]
- 5 (a) Referred to the origin O, the points A and B have position vectors **a** and **b**. Point C is on the line which contains A and is parallel to **b**. It is given that the vectors **a** and **b** are both of magnitude 2 units and are at an angle of sin⁻¹(1/6) to each other. If the area of triangle OAC is 3 units², use vector product to find the possible position vectors of C in terms of **a** and **b**.
 - (b) Referred to the origin O, the points P and Q have position vectors \mathbf{p} and \mathbf{q} where \mathbf{p} and \mathbf{q} are non-parallel, non-zero vectors. Point R is on PQ produced such that $PQ : QR = 1 : \lambda$. Point M is the mid-point of OR.
 - (i) Find the position vector of R in terms of λ , **p** and **q**. [1]

F is a point on OQ such that F, P and M are collinear.

(ii) Find the ratio
$$OF:FQ$$
, in terms of λ . [4]

- 6 Do not use a calculator in answering this question.
 - (a) It is given that two complex numbers z and w satisfy the following equations

$$13z = (4-7i) w$$
,
 $z-2w = 5-4i$.

Find
$$z$$
 and w . [4]

- **(b)** It is given that $q = -\sqrt{3} i$.
 - (i) Find an exact expression for q^6 , giving your answer in the form $re^{i\theta}$, where r > 0 and $0 \le \theta < 2\pi$.
 - (ii) Find the three smallest positive whole number values of n for which $\frac{q^n}{q^*}$ is purely imaginary.

[4]

It is given that $f(x) = 2x^6 - 4x^4 - 6x^2 - 7$. The diagram shows the curve with equation y = f(x) for $x \ge 0$. The curve crosses the positive x-axis at $x = \alpha$.

- (i) Find the value of α , giving your answer correct to 3 decimal places. [1]
- (ii) Show that f(x) = f(-x) for all real values of x. What can be said about the six roots of the equation f(x) = 0? [4]

It is given that g'(x) = f(x), for all real values of x.

- (iii) Determine the x-coordinates of all the stationary points of graph of y = g(x) and determine their nature. [3]
- (iv) For which values of x is the graph of y = g(x) concave upwards? [3]

8 (a) (i) Show that, for $r \in \emptyset$, $r \ge 2$,

$$\frac{1}{(r-1)!} - \frac{2}{r!} + \frac{1}{(r+1)!} = \frac{r^2 - r - 1}{(r+1)!}.$$
 [1]

Let
$$S_n = \sum_{r=2}^n \frac{r^2 - r - 1}{(r+1)!}$$
.

- (ii) Hence find S_n in terms of n. [3]
- (iii) Show that S_n converges to a limit L, where L is to be determined. [2]
- (iv) Find the least integer value of n such that S_n differs from L by less than 10^{-10} . [2]
- (b) (i) Suppose that f is a continuous, strictly decreasing function defined on $[1, \infty)$, with f(x) > 0, $x \ge 1$. According to the Maclaurin-Cauchy test, then the infinite series $\sum_{n=1}^{\infty} f(n)$ is convergent if and only if the integral $\int_{1}^{\infty} f(x) dx$ is finite. By applying the Maclaurin-Cauchy test on the function f defined by $f(x) = \frac{1}{x}$, $x \ge 1$, determine if the infinite series $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent. [2]
 - (ii) Let p be a positive number. By considering the Maclaurin-Cauchy test, show that if p > 1, the infinite series $1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ is convergent. [2]

- A drilling company plans to install a straight pipeline AB through a mountain. Points (x, y, z) are defined relative to a main control site at the foot of the mountain at (0,0,0), where units are metres. The x-axis points East, the y-axis points North and the z-axis points vertically upwards. Point A has coordinates (-200,150,10) while point B has coordinates (100,10,a), where A is an integer. Point B is at a higher altitude than Point A.
 - (i) Given that the pipeline AB is of length 337 metres, find the coordinates of B. [3] A thin flat layer of rock runs through the mountain and is contained in the plane with equation 20x + y + 2z = -837.
 - (ii) Find the coordinates of the point where the pipeline meets the layer of rock. [4] To stabilise the pipeline, the drilling company decides to build 2 cables to join points A and B to the layer of rock. Point A is joined to Point P while point B is joined to Point Q.
 - (iii) Assuming that the minimum length of cable is to be used, find the length PQ. [2]
 - (iv) Show that the pipeline is at an angle of 10.8° to the horizontal plane. [2]
 - (v) After the pipeline is completed, a ball bearing is released from point B to roll down the pipeline to check for obstacles. The ball bearing loses altitude at a rate of 0.3t metres per second, where t is the time (in seconds) after its release. Find the speed at which the ball bearing is moving along the pipeline 10 seconds after its release.

[3]

- An epidemiologist is studying the spread of a disease, dengue fever, which is spread by mosquitoes, in town A. P is defined as the number of infected people (in thousands) t years after the study begins. The epidemiologist predicts that the rate of increase of P is proportional to the product of the number of infected people and the number of uninfected people. It is known that town A has 10 thousand people of which a thousand were infected initially.
 - (i) Write down a differential equation that is satisfied by P. [1]
 - (ii) Given that the epidemiologist projects that it will take 2 years for half the town's population to be infected, solve the differential equation in (i) and express *P* in terms of *t*. [6]
 - (iii) Hence, sketch a graph of P against t. [2]

A second epidemiologist proposes an alternative model for the spread of the disease with the following differential equation:

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{2\cos t}{\left(2-\sin t\right)^2} \tag{*}$$

- (iv) Using the same initial condition, solve the differential equation (*) to find an expression of P in terms of t. [3]
- (v) Find the greatest and least values of *P* predicted by the alternative model. [2]
- (vi) The government of town A deems the alternative model as a more realistic model for the spread of the disease as it more closely follows the observed pattern of the spread of the disease. What could be a possible factor contributing to this?