
Victoria School Secondary 4 Preliminary Examination 2024 Suggested Answer to Chemistry Paper 3

Qn	Skill				Answer			Mark
1(a)	PDO	Results table:						
		experiment	volume of P /cm ³	volume of Q /cm ³	initial temperature of P /°C	highest temperature of mixture /°C	temperature rise /°C	
		1	40.00	10	31.5	34.0	2.5 - 3	
		2	35.00	15	31.5	35.5	3.5 - 4.5	
		3	30.00	20	31.5	37.0	5.5 - 6.5	
		4	25.00	25	31.5	39.0	7 – 8	
	MMO	5	20.00	30	31.5	38.0	5.5 - 6	
		6	15.00	35	31.0	37.0	4.5 – 5.5	
		7	10.00	40	31.0	35.0	3 - 4	
		Results:						
		Temperature Ignore if stude Reject if stude	ent wrote	°C or '+' ii	rded to neares n the table	t 0.5 °C		1
		All temperatu	e rise cal	culated co	orrectly			1
		All temperatu	e reading	s within r	ange of teache	er's value.		1
		All results dis with 5 no mor		orrect trer	nd (increase fro	om 1-4, decrea	ise from 5-7,	1
1(b)	PDO	Scale chosen is appropriate and is not accurate (uniform scale chosen to use more than half of each axis); no awkward scale						1
		2 Lines of best fit (equal points on both sides of the graph and any anomalous points ignored) BOD if best fit lines do not cross above highest point *first						
		line must pass through origin. Only 1 anomalous point allowed.						1
		Axes (include				,		1
		All points plot	ed correc	allow (allow	error to $\frac{1}{2}$ a so	uare)		

1(c)	ACE	Correct volume of Q read from graph with units shown (24.5 cm ³ ± 0.50).	1
		Correct temperature rise read from graph with units shown ($\frac{7.8}{2.8} \pm 0.10$)	
		Working on the graph (Penalize if working is missing)	
1(d)(i)	ACE	$2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$	1
1(d)(ii)	ACE	No of mol of NaOH = <u>24.5</u> /1000 x 1.23 = 0.03014 mol = 0.0301 mol	
		2 mol NaOH = 1 mol H_2SO_4	
		No of mol of acid in P = 0.03014/2 mol = 0.01507 mol = 0.0151 mol	1
		UNDERLINED VALUES TO BE TAKEN FROM STUDENT'S GRAPH	
1(d)(iii)	ACE	Volume of sulfuric acid = $50 - \frac{24.5}{2} = 25.5 \text{ cm}^3$	1
1(d)(iv)	ACE	Concentration of sulfuric acid = 0.01507 / (25.5)/1000 = 0.591 mol/dm ³	1
	PDO	appropriate units in final answers in ((d)(iii) (cm ³), (d)(iv) (mol/dm ³)	1
1(e)	ACE	ΔH = 50 x 1.05 x 4.2 x <u>7.8</u> = -1719.9 J	1
	PDO	Correct sign (-) and appropriate significant figures (1 d.p.) in final answers in (e)	1
1(f)	ACE	I agree with student A but disagree with student B. (must state but no marks) Both a weak acid and a monobasic acid would result in a <u>lower concentration</u> of H^+ ions and hence a lower maximum temperature.	1
		However, the (final) <u>volume of a weak dibasic acid would be the same as that</u> of the sulfuric acid.	1

Qn	Skill		Answer	Mark	
2a	PDO	Results table:			
		record initial mass, mass after 2 minutes and final mass, with correct headings and units in a table			
	MMO	initial mass of coni flask and acid / g			
		180.06	181.82		
		REJECT: WEIGHT			
		Results:			
		Mass record to 2 d.p	o. or 3 d.p. (Depending on Lab)		
				1	
2b	MMO	test	observations]	
		To 1 cm depth of P in a test tube, add aqueous ammonia until no further change occurs.	Light blue ppt formed		
		To 2 cm depth of P in a test tube, add aqueous sodium hydroxide until no further change is observed.	Light blue ppt formed Light blue ppt insoluble in excess (sodium hydroxide)	1	
		Heat and test any gas evolved.	Light blue ppt turns black BOD: Black solid formed.	1	

(Colourless gas evolved) (Gas is pungent)	
Gas turns <u>moist blue litmus</u> paper red	
Gas is <u>ammonia</u> (Marks awarded in Test 2 OR Test 4)	
To 1 cm depth of P in a test tube, add aqueous silver chloride. No observable changes (1 mark for Test 3 AND Test 5) 1	
To 2 cm depth of Q in a test tube, add aqueous sodium hydroxide until no further change is observed.Blue/pale blue ppt formed Blue ppt insoluble in excess sodium hydroxide (Marks awarded in Test 2 OR Test 4)	
Add a piece of aluminum foil.Blue ppt turns black / Black solid formed [BOD]Heat and test any gas evolved.(Marks awarded in Test 2 OR Test 4)	
(Effervescence of Colourless gas) (Gas is pungent)	
Gas turns <u>moist blue litmus</u> paper red	
Gas is <u>ammonia</u>	
(Marks awarded in Test 2 OR Test 4)	

2(d)(i)	ACE	aqueous sodium hyo Mass lost = 180.06+		1
		Anion: Nitrate/NO ₃ ⁻ Moist red litmus paper turns blue, ammonia gas produced. BOD: Test 4/ Produced ammonia gas after heating with aluminum and		
2(0)(")		Moist red litmus paper turns blue, ammonia gas produced. BOD: Test 2/ Produced ammonia gas after heating with aqueous sodium hydroxide		
2(c)(i) 2(c)(ii)	ACE ACE	Tick: Copper(II) Cation: ammonium/I	\ц,+	1
		Leave the mixture to stand.	white ppt settles to the bottom	
		To a 1 cm depth of Q , add aqueous potassium iodide until no further change is observed.	white/cream/yellowish- brown/brown ppt formed OR blue solution turned brown	
		To 1 cm depth of Q in a test tube, add aqueous barium nitrate.	No observable changes (1 mark for Test 3 AND Test 5)	1

2(d)(ii)	ACE	$CuCO_3 + 2HNO_3 \rightarrow Cu(NO_3)_2 + CO_2 + H_2O$	
		No of mol of CO ₂ = 0.24 / 44 = <u>0.005455 mol</u>	1
		1 mol $CO_2 \equiv 1$ mol $CuCO_3$	
		$0.005455 \text{ mol } \text{CO}_2 \equiv 0.005455 \text{ mol } \text{CuCO}_3$	
		Mass of CuCO ₃ = 0.005455 x 124 = 0.6764 g	
		Percentage Purity = 0.6764 / 2 x 100% = <u>33.8 %</u> (to 3sf)	1
2(e)	MMO	All mass lost is due to carbon dioxide	1
2(f)	MMO	Plug the mouth of the conical flask with cotton wool. OR Keep weighing the flask until a constant mass is achieved.	1
2(g)	ACE	To remove any carbonate ions (that may give a false positive/interfere with the reaction.)	1
		Т	otal: 17

P	1. Measure a fixed volume e.g <mark>20 cm³, using a <mark>measuring cylinder</mark>, of <mark>1.0 mol/dm³ of acidified sodium iodate</mark> and transfer into a <mark>conical flask/beaker</mark>.</mark>	1
	2. Add a few drops of starch solution indicator.	
	3. Measure a fixed volume e.g <mark>20 cm³</mark> , using a <mark>measuring cylinder</mark> , of <mark>1.0 mol/dm³ of aqueous potassium iodide</mark> and add it to the <mark>conical flask/beaker</mark> .	1
	4. Start the stopwatch and measure the time taken to the nearest second for blue-black colour to appear.	r
	5. Repeat step 1 to 4 using same volume and concentration of acidified sodium iodate and same volume but varying concentrations e.g. 2.0 mol/dm ³ ,0.5 mol/dm ³ of aqueous potassium iodide.	1
	6. The highest concentration would give the colour change first, while the lowest concentration would give the colour change last.	1
	Q1: Constant quantities of KI and NalO₃ and constant concentration of NalC Q2: Varying concentrations of KI) <mark>3</mark>
	A: Suitably sized container, stopwatch, measuring cylinder/burette/pipette M: Take the time using the stopwatch, describe how time is related to concentration.	
	·	Total: 4
10		
	<u>Marks</u> 10 12	 2. Add a few drops of starch solution indicator. 3. Measure a fixed volume e.g 20 cm³, using a measuring cylinder, of 1.0 mol/dm³ of aqueous potassium iodide and add it to the conical flask/beaker. 4. Start the stopwatch and measure the time taken to the nearest second fo blue-black colour to appear. 5. Repeat step 1 to 4 using same volume and concentration of acidified sodium iodate and same volume but varying concentrations e.g. 2.0 mol/dm³, 0.5 mol/dm³ of aqueous potassium iodide. 6. The highest concentration would give the colour change first, while the lowest concentration would give the colour change last. Q1: Constant quantities of KI and NaIO₃ and constant concentration of NaIC Q2: Varying concentrations of KI A: Suitably sized container, stopwatch, measuring cylinder/burette/pipette M: Take the time using the stopwatch, describe how time is related to concentration.

ACE

Ρ

14

4