RVHS H2 Mathematics Remedial Programme

Topic: Vectors III

Basic Mastery Questions

1. ACJC Promo 9758/2020/Q8(i), (ii)

The lines l and m are defined by the equations

$$l: \mathbf{r} = \mathbf{i} - \mathbf{k} + \lambda(2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}),$$
$$m: \frac{x-1}{4} = \frac{a-y}{a} = \frac{z+3}{4}.$$

(i) Given that the lines intersect, show that a = 6.

(ii) Find the position vector of N, the foot of perpendicular from the point A(5, 0, 1) to the line l.

Answers: (ii) $\overrightarrow{ON} = \frac{1}{7} \begin{pmatrix} 11 \\ -12 \\ -1 \end{pmatrix}$

2. SAJC Promo 9758/2020/Q10

Relative to an origin *O*, the points *A* and *C* have position vectors $3\mathbf{i} + 2\mathbf{k}$ and $4\mathbf{i} + \mathbf{j}$ respectively. The point *C* is such that *OABC* is a parallelogram and the point *E* divides *AB* in the ratio 1:3. The point *M* is the midpoint of *CA*.

(i) Find the cartesian equation of line *CA* and the vector equation of line *OE*. [5] (ii) Find the position vector of point *F*, the point of intersection of *CA* and *OE*. Hence deduce the ratio OF:OE. [3]

(iii) Find angle OMC, giving your answer correct to the nearest 0.1° . [3]

(iv) Find the exact length of projection of OM onto CA.

Answers: (i)
$$\mathbf{r} = \mu \begin{pmatrix} 16\\1\\8 \end{pmatrix}, \quad \mu \in \mathbb{R}$$
 (ii) $\overrightarrow{OF} = \frac{1}{5} \begin{pmatrix} 16\\1\\8 \end{pmatrix}, \quad OF : OE = 4:5$
(iii) $\angle OMC = 102.8^{\circ}$ (iv) $\frac{1}{3}\sqrt{6}$ units

[2]

[2]

[3]

Standard Questions

1. ACJC Promo 9758/2021/Q6

The Cartesian equation of line L_1 is $\frac{x-2}{a} = \frac{y+2}{b} = \frac{z-3}{c}$, where a, b, c are constants.

The line L_2 is parallel to the vector $4\mathbf{i} + 3\mathbf{j}$. The line L_3 passes through the origin and the point with position vector $\mathbf{j} + \mathbf{k}$.

- (i) Given that L_1 is perpendicular to L_2 , form an equation relating *a* and *b*. [1]
- (ii) Given that L_1 intersects L_3 , show that 5a+2b-2c=0. [3]
- (iii) Hence express *a* and *b* in terms of *c*. [1]

Find the acute angle between L_1 and L_3 .

Answers: (i) 4a + 3b = 0 (iii) $a = \frac{6}{7}c$; $b = -\frac{8}{7}c$ (iv) 86.7°

2. CJC Promo 9758/2021/Q9

With reference to the origin *O*, the points *A* and *B* have position vectors $\mathbf{a} = -\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{b} = 2\mathbf{j} + 5\mathbf{k}$ respectively.

(i) Find a vector equation of the line l_1 that passes through point A and is parallel to the vector **a**.

(ii) Find the exact length of projection of **b** on l_1 . Hence find *d*, the exact perpendicular distance from the point *B* to l_1 . [4]

(iii) Using the value of d found in part (ii), find the position vector of the point C, the foot of perpendicular from the point B to l_1 . [3]

(iv) The line l_2 passes through point *B* and is parallel to vector **b**. Find a cartesian equation of l_3 which is the reflection of l_2 in l_1 . [3]

Answers: (i)
$$\mathbf{r} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} + k \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} = \lambda \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \ \lambda \in \mathbb{R}$$
 (ii) $2\sqrt{6}; \ \sqrt{5}$

(i)
$$l_1: \mathbf{r} = \begin{pmatrix} -1\\1\\2 \end{pmatrix} + k \begin{pmatrix} -1\\1\\2 \end{pmatrix} = \lambda \begin{pmatrix} -1\\1\\2 \end{pmatrix}, \ \lambda \in \mathbb{R}$$
 $l_1: \mathbf{r} = \begin{pmatrix} -1\\1\\2 \end{pmatrix} + k \begin{pmatrix} -1\\1\\2 \end{pmatrix}, \ k \in \mathbb{R} \text{ or AEF}$

[2]