2018 H2 9749 Physics Paper 2

1(a)	Principle of moments states that for an object <u>to be in equilibrium</u> , <u>the sum</u> of clockwise moments about any axis of rotation (or pivot) must equal <u>the sum</u> of anti-clockwise moments about that (same) axis (or pivot).	
	Note: <u>both conditions</u> for equilibrium and sum of moments must be stated.	
1(b)(i)	Weight of sign = $4.5 \times 9.81 = 44.1 \text{ N}$	
	Tension in support at A = $\frac{7}{10} \times 44.1 = 30.9$ N [B1]	
	Tension in support at B = $\frac{3}{10} \times 44.1 = 13.2$ N [B1]	
	Note: By inspection, the tension at A is larger (closer to the centre of mass)	
1(b)(ii)	Taking moments about the centre of mass, $T_A \times (d - 0.20) = T_B \times (1.00 - 0.20 - d)$ [M1]	
	$(d-0.20) = \frac{T_B}{T_A} \times (1.00 - 0.20 - d)$	
	$(d-0.20) = \frac{3}{7} \times (1.00 - 0.20 - d)$	
	<i>d</i> = 0.38 m [A1]	
1(c)	The supports has to provide a horizontal force (towards the left) to <u>maintain</u> the sign in <u>equilibrium</u> (no net force) due to the wind force acting on the right.	
	Note: Do not repeat the question without using key words. Also, there is no horizontal component of weight. Newton 3 rd law cannot be used to describe.	

2(a)(i)	Hooke's law states that the force is proportional to the extension if the limit of proportionality is not exceeded.	
2(a)(ii)	Area under the graph = $\frac{1}{2}(6.8)(85 \times 10^{-3})$ [M1]	
	= 0.289 J [A1]	
2(b)	By conservation of energy, Elastic Potential Energy at start = Gravitational Potential Energy at P + Kinetic Energy at P = $mgh + \frac{1}{2}mv^2$ [C1] $0.289 = (0.042)(9.81)(0.40) + \frac{1}{2}(0.042)v^2$ [C1] $v = 2.43 \text{ m s}^{-1}$ [A1]	

2(c)(i) At minimum speed, the weight of the ball is just sufficient to provide for the centripetal force required to keep the ball in circular motion. The ball is just about to lose contact with the track and normal contact force, N, is zero. [M1] Hence, $W + N = \frac{mv^2}{r}$ At minimum speed, N is zero. $mg = \frac{mv_{min}^2}{r}$ $v_{min} = \sqrt{gr}$ $= \sqrt{(9.81)(0.20)}$ [C1] $= 1.4 \text{ m s}^{-1}$ [A1]	
2(c)(ii) <i>v</i> _{min} is independent of mass, hence, it will not change when the ball is replaced with one of greater mass. [A1]	

3(a)	Diffraction is the spreading of waves after they pass through an aperture or around an obstacle.	
	Note: Examples of unaccepted answers - diffraction is the spreading of waves through an obstacle, or bending of waves after they pass through an aperture.	
3(b)	$\sin \theta = \lambda/b$ where b = slit width	
	Since θ is small, sin $\theta \approx \tan \theta \approx \theta$	
	$\lambda = (14 \times 10^{-2}/2.7) (12 \times 10^{-6}) = 6.2 \times 10^{-7} \text{ m}$	
	Note: Do not mix up other formula like Young's double slit or diffraction grating formula.	

4(a)	The threshold frequency is the minimum frequency of incident light required for	[B2]
	photoemission to occur.	

4(c)(ii)2	If the frequency of the light is <u>above the threshold frequency</u> , photoemission occurs and europium <u>becomes less negatively charged</u> (i.e. more positive), causing a <u>larger repulsion</u> .	[B1]
	Otherwise if frequency is below the threshold, nothing happens.	[B1]
	Hence the leaf will not fall under any wavelength of light.	
	Note: A metal is positively charged as a result of losing electrons and not in gaining positive charges. Hence it becomes less negatively charged.	

5(a)	Volume of 1 mole of copper = $\frac{m}{\rho} = \frac{0.0635}{8960} = 7.09 \times 10^{-6} m^3$	
	No of charge carries in 1 m ³ of copper = $\frac{6.02 \times 10^{23}}{7.09 \times 10^{-6}} = 8.49 \times 10^{28}$	
	Number density of charge carriers in copper = 8.49×10^{28}	
5(b)	P=I ² R	
	$5.0=I^{2}(30)$	
	I=0.4082A	[C1]
	Cross sectional area A	
	$=\frac{\pi d^2}{4}$	
	$=\frac{\pi(0.36\times10^{-3})^2}{4}$	
	$=1.018\times10^{-7}\mathrm{m}^2$	[C1]
	I = nAvq	
	$0.4082 = (3.4 \times 10^{28})(1.018 \times 10^{-7})(v)(1.6 \times 10^{-19})$	[C1] [A1]
	v = 7.4 x 10 ms	[,]
	Note: Do not mixed up the number density of copper with that of tungsten. Learn equation $I = nAvq$ fully.	
5(c)	The length of the wire is doubled, hence resistance of the wire will also be doubled.	[B1]
	With the same potential difference across the wire, current will be halved. By the equation I =navq, when I is halved, drift velocity v will halved as n,a and q remains constant.	[B1] [B1]

6(a)(i)	V _{out} =IR	[A1]
	$V_{out} = (27 \times 10^{-3})90 = 2.43 V$	
6(a)(ii)	Effective resistance across Q and thermistor = $\left(\frac{1}{90} + \frac{1}{120}\right)^{-1} = 51.43 \Omega$	[C1]
	Resistance of P = $\frac{9.0 - 2.43}{2.43} \times 90 = 243.3 \Omega$	[C1]
	$V_{out} = \frac{51.43}{51.43 + 243.3} \times 9.0 = 1.57 \text{ V}$	[A1]
6(a)(iii)	As the temperature of the thermistor increases, the resistance of the thermistor	[M1]
	decreases. Hence the effective resistance across Q and thermistor decreases.	[IVI1] [Δ1]
6(b)	Length AB	
	$=\frac{92}{360}\times 2\pi r$	[C1]
	$=\frac{92}{360}\times 2\pi(0.012)$	
	= 0.01927 m	[C1]
	$V_{out} = \frac{0.01927}{0.065} \times 9.0 = 2.67 \text{ V}$	[A1]

7(a)(i)	The p.d. V increases at an increasing rate with respect to the frequency f as f increases.						
	Note: This relationship is not directly proportional. If that is true, then $V = kf$, so V/f should be a constant. This is not true however, if you check for pairs of V and f data in the table.						
	f.						

7(b)(i),	0.7	7 TTTTT			TITT	TTTTTTTT		11111		TTTT		111			
(ii)															
	lg(V/V)												z		
	0.6	3										X			
											Χ				
										/	+				
	0.5	;													
	0.4												_		
	0.1					4	A						-		
	61						*						-		
	0.3														
	0.0														
						*									
	0.2														
	0.2				/										
													-		
	0.1												-		
	0.1		A												
													-		
													-		
	0 14	1.56	14.60	14.	.64	14.68	14.72	14.7	6	14.8	0	14	⊣ 1.84		
											lg (f/Hz	z)		
7(b)(iii)	V = kf ⁿ so equ	uation	n of lir	e is lo	1 V =	n la f +	lak								
7(b)(iii)	V = kf ⁿ , so equ	uatior	n of lir	ie is lg	, V =	n lg f +	lgk								
7(b)(iii)	V = kf ⁿ , so equ	uatior	n of lir = (0.6	ie is lg 64 – 0`	,V =) / (1	n lg f + 4.84 – 1	lgk 4.56) =	2.29							
7(b)(iii)	V = kf ⁿ , so equ n = gradient o	uatior of line	n of lir = (0.6	ie is lg 64 – 0)	g V =) / (1	≕n lg f + 4.84 – 1	lgk 4.56) =	2.29							
7(b)(iii)	V = kf ⁿ , so equination of the second secon	uatior of line nine" i	n of lir = (0.6 means	ie is lg 64 – 0) s that	y V =) / (1 γou	n lg f + 4.84 – 1 need to	lgk 4.56) = show yc	2.29 our wo	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i)	V = kf ⁿ , so equivalent on a gradient on $Note: "Determined of f = c / \lambda$	uatior of line nine" (n of lir = (0.6 mean	ie is lg 64 – 0) <mark>s that</mark>	y V =) / (1 <mark>you</mark>	⊧ n lg f + 4.84 – 1 <mark>need to</mark>	lgk 4.56) = <mark>show yc</mark>	2.29 our we	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i)	V = kf ⁿ , so equal n = gradient o Note: "Determ f = c / λ λ = (3.0 x 10 ⁸)	uatior If line hine" (n of lir = (0.6 mean: 20 x 1(ne is lg 64 – 0) <mark>s that 1</mark> 0 ⁻⁹) = 5	y V =) / (1 <mark>you</mark> 5.769	n lg f + 4.84 – 1 need to	lgk 4.56) = <mark>show yc</mark> Hz	2.29 our wo	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i)	V = kf ⁿ , so equ n = gradient o Note: "Determ $f = c / \lambda$ $\lambda = (3.0 \times 10^8)$ lg f = 14.76	uatior f line hine" () / (52	n of lir = (0.6 means 20 x 10	$rac{1}{100} = 100 m{m}$ $rac{1}{100} m{m}$	y V =) / (1 <mark>you</mark> 5.76§	= n lg f + 4.84 – 1 <mark>need to</mark> 9 x 10 ¹⁴ l	lgk 4.56) = <mark>show yc</mark> Hz	2.29 Dur wa	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76	uatior of line <u>nine" (</u>) / (52	n of lir = (0.6 mean: 20 x 10	ne is lg 64 – 0) <mark>s that</mark> 0 ⁻⁹) = 5	9 V =) / (1 <mark>you</mark> 5.769	= n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l	lgk 4.56) = <mark>show yc</mark> Iz	2.29 our wo	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1,	uatior f line hine" () / (52 this c	n of lir = (0.6 means 20 x 10 corres	ne is l <u>g</u> 54 - 0) 5 that 0 ⁻⁹) = 5 ponds	y V =) / (1 you 5.769	= n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yc</mark> Hz ł6	2.29 our wo	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i)	V = kf ⁿ , so equal n = gradient o Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V	uation of line <u>hine" (</u>) / (52 this c	n of lir = (0.6 mean: 20 x 10 corres	ne is l <u>g</u> 54 – 0) 5 <u>that</u> 0 ⁻⁹) = 5 ponds	y V =) / (1 <mark>you</mark> 5.769	= n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yc</mark> Hz I6	2.29 our wo	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V	uatior of line <u>nine" (</u>) / (52 , this c	n of lir = (0.6 mean: 20 x 10 corres	ie is lg 64 – 0) 5 that 0 ⁻⁹) = 5 ponds	y V =) / (1 you 5.769 ⊱to le	= n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yc</mark> Iz	2.29 our wo	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E	uatior of line <u>hine" (</u>) / (52 this c	n of lir = (0.6 means 20 x 10 corres	e is lg 54 – 0) 5 that 0 ⁻⁹) = 5 ponds	y V =) / (1 you 5.769 a to l	= n lg f + 4.84 – 1 <u>need to</u> 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yo</mark> Hz I6	2.29 our wo	orkir	ngs c	lea	rly.			
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E	uation of line <u>hine" (</u>) / (52 this c	n of lir = (0.6 mean: 20 x 10 corres	e is lg 54 – 0) <u>s that</u> 0 ⁻⁹) = 5 ponds	ı V =) / (1 <u>you</u> 5.769	= n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yc</mark> Hz ŀ6	2.29 Dur wo	<u>orkir</u>	ngs c	lea	rly.			
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient o Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po	uation of line <u>hine" (</u>) / (52 this c	n of lir = (0.6 mean: 20 x 10 corres	ne is lg 54 – 0) 5 <u>that</u> 0 ⁻⁹) = 5 ponds	y V =) / (1 <u>you</u> 5.76§ 5 to le	n lg f + 4.84 – 1 <u>need to</u> 9 x 10 ¹⁴ l g V = 0.4 e numbe	lgk 4.56) = <mark>show yc</mark> Hz H2	2.29 our wo	orkir	ngs c	:lea	rly.	iit tir	ne,	
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po E is the energ	uation of line <u>nine" (</u>) / (52 this c / wer c iy of e	n of lir = (0.6 means 20 x 10 corres	e is lg 54 – 0) 5 that 0 ⁻⁹) = 5 ponds	y V =) / (1 5.769 5 to l s the	 n lg f + 4.84 - 1 need to x 10¹⁴ l g V = 0.4 e number 	lgk 4.56) = <mark>show yo</mark> Hz I6	2.29 our we	orkir	ngs c	per	rly.	it tir	ne,	
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po E is the energ	uation of line <u>hine" (</u>) / (52 this c this c	n of lir = (0.6 means 20 x 10 corres	(p + p) = (p + p) (p + p)) / (1 <u>you</u> 5.769 to lo s the	n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yo</mark> Hz H6	2.29 our wa	orkir elea	ngs c	per	rly.		ne,	
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po E is the energ 10 = (N/t) (3.8)	uation of line <u>nine" (</u>) / (52 this c this c y of e 8 x 10	f = (0.6) $f = (0.6)$ $f = (0.7)$	e is lg 54 – 0) 5 <u>that</u> 0 ⁻⁹) = 5 ponds 9, N/t is	y V =) / (1 <u>you</u> 5.769 5 to l s the	n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yc</mark> ⊣z ŀ6	2.29 our wo	orkir	ngs c	per	rly.	iit tir	ne,	
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient o Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po E is the energ 10 = (N/t) (3.8 N/t = 2.631 x	uation f line <u>hine"</u> (52) this c wer c ly of e 3×10 10^{19} s	on of lin = (0.6 means 20×10^{-10} corres of LED each p r^{-19}) r^{-1}	e is lg 54 – 0) 5 <u>that</u> 0 ⁻⁹) = 5 ponds 9, N/t is 9hoton	y V =) / (1 <u>you</u> 5.76§ 5 to l s the	n lg f + 4.84 – 1 need to 2 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = <mark>show yc</mark> Hz H2	2.29 our wo	elea	ngs o	per	rly.		ne,	
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po E is the energ 10 = (N/t) (3.8) N/t = 2.631 x 5	wer c wer c y of e	$r of lir= (0.6)means20 x 10corresof LEDeach pr^{-19})s^{-1}$	pe is lg $(54 - 0)^{2}$ $(54 - 0)^{2}$ (5	ı V =) / (1 you 5.769 5 to lq s the	n lg f + 4.84 – 1 need to 9 x 10 ¹⁴ l g V = 0.4	lgk 4.56) = show yo Hz H5	2.29 our wo	elea	ngs d	per	rly.	it tir	ne,	
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equal n = gradient of Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po E is the energ 10 = (N/t) (3.8 N/t = 2.631 x 1) So in 1 secon	uation f line <u>hine" (</u>) / (52 this c this c y of e 3 x 10 10 ¹⁹ s d, 2.6	of lir = (0.6 means 20×10^{-19} 5^{-19}) 5^{-1}	e is lg 54 – 0) 5 <u>that</u> 5 ⁻⁹) = 5 ponds 9, N/t is 9hoton	y V =) / (1 <u>you</u> 5.769 ; to l s the	r lg f + 4.84 - 1 $r lg t + 1$ $r lg t - 1$	Igk 4.56) = show yo Hz H6 r of pho eleased	2.29 Dur wo	elea	ngs c	per	rly.	iit tir	ne,	
7(b)(iii) 7(c)(i) 7(c)(ii)	V = kf ⁿ , so equ n = gradient o Note: "Determ f = c / λ λ = (3.0 x 10 ⁸) lg f = 14.76 From Fig 7.1, So V = 2.88 V P = (N/t) E where P is po E is the energ 10 = (N/t) (3.8 N/t = 2.631 x 1) So in 1 secon In 1 minute, 2	uation f line ine" () / (52 this c y of e 3 x 10 10 ¹⁹ s d, 2.6	of lir = (0.6 mean: 20 x 10 corres of LED each p -19) 5^{-1} 5^{-1} 331×10^{19}	$(10^{-19} \text{ p}) = 10^{-19}$	y V =) / (1 <u>you</u> 5.769 5 to l 5 to l 5 the 1.5	$r = n \log f + 4.84 - 1$ $r = 10^{-10} + 10^{-14} + 10^$	Igk 4.56) = show yo Hz H6 r of pho eleased photon	2.29 bur wo tons r	elea	ased	per	rly.	iit tir	ne,	

7(c)(iii)	The potential difference (p.d.) across the LED for emitting photons of wavelength 520 nm is 2.88 V. found in (c)(i).	
	Hence the p.d across series resistor = $4.5 - 2.88 = 1.62$ V	
	Passage mentioned that the safe normal operating current through LED is	
	Resistance of resistor = $1.62 / (20 \times 10^{-3}) = 81 \Omega$	
	Note: The e.m.f. of the power supply is not the p.d. across the series resistor.	
7(d)	730 mAh means that the total amount of charge available from the power supply is equal to that provided by a 730 mA current in 1 hour (since $Q = It$)	
7(e)	Passage mentioned that 60W incandesecent lamp produces an illumination of 840 lumens, while 10W power for LED produces an illuminatin of 800 lumens. Hence,	
	Efficiency of LED / Efficiency of incandescent lamp = (800/ 10) / (840/ 60) = 5.7	
7(f)(i)	LEDs and CFLs consume less power than incandescent lamps to produce the same illumination, hence more cost effective in terms of electrical consumption.	
	LEDs and CFLs are also less likely to be damaged than incandescent lamps, since they require smaller currents to operate, hence have longer life spans. Thus less frequent replacements are required.	
7(f)(ii)	Consider 50000 hrs of use for a traffic light	
	LED Cost of lamp = \$35.95	
	Total electrical energy consumption = $50000 \text{ h} \times 10 \text{ W} = 500000 \text{ Wh} = 500 \text{ kWh}$ Cost of electricity= $500 \times 0.22 = 110$	
	So total cost = \$145.95	
	<u>CFL</u> Cost of lamp = 5 x \$3.95 = \$19.75	
	Total electrical energy consumption = $(5 \times 10000) h \times 14W$ = 700000 Wh = 700 kWh Cost of electricity = 700 x \$0.22 = \$154	
	So total cost = \$173.75	
	So in the long run, the total cost is still cheaper for LED. Considering that traffic lights are operating continuously all day long, the long term cost should be considered, hence the decision by LTA should be supported.	
	Note: You need to show that the LED lamps were cost effective over the long term (of a period of 50 000 hours). You should not be considering only the cost of buying the lamps over this period, but not the cost of electrical consumption.	

7(f)(iii)	The significant amount of thermal energy produced by incandesecent lamps can melt the snow falling on the traffic light, preventing them from being covered from sight.	