## Anderson Serangoon Junior College 2023 H2 Physics Prelim P2 Exam Mark Scheme

## Paper 2 (80 marks)

## E – Easy, A – Average, D – Difficult

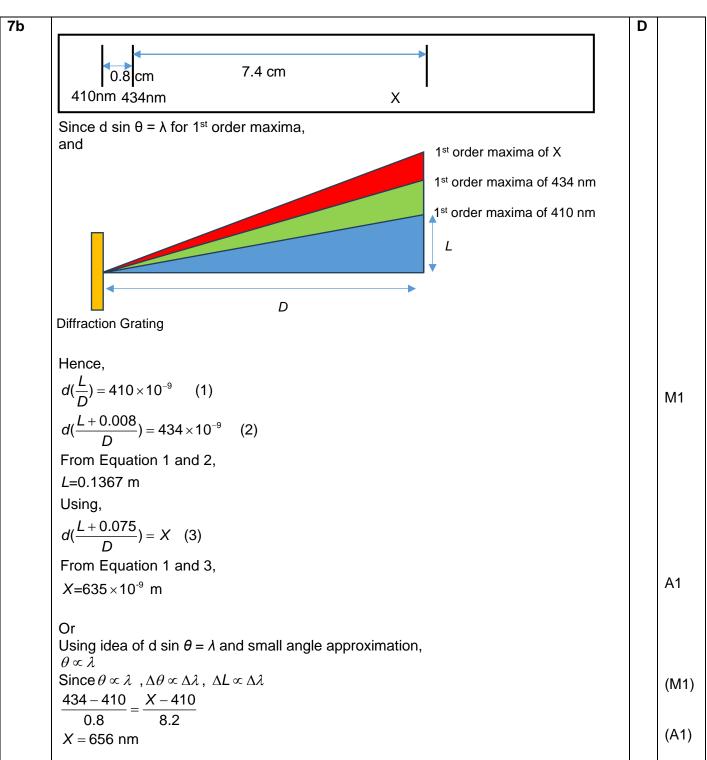
| ECF | Error carried forward | SF  | Significant figures error  | MO | No A marks awarded       |
|-----|-----------------------|-----|----------------------------|----|--------------------------|
| AE  | Arithmetic error      | BOD | Benefit of doubt           | ^  | More is needed in answer |
| POT | Power of ten error    | CON | Contradictory response     | ХР | Wrong physics            |
| TE  | Transcription error   | IR  | Irrelevant (part) response |    |                          |

| 1a   | $k = \frac{F}{e}$                                                                    | Α |    |
|------|--------------------------------------------------------------------------------------|---|----|
|      | $=\frac{0.180 \times 9.81}{0.036}$                                                   |   | C1 |
|      |                                                                                      |   |    |
|      | $= 49 \text{ N m}^{-1}$                                                              |   | A1 |
| 1b   | $k = \frac{F}{e}$                                                                    | Α |    |
|      |                                                                                      |   |    |
|      | $\frac{\Delta k}{k} = \frac{\Delta F}{F} + \frac{\Delta e}{e} = \frac{2}{36} + 0.02$ |   | C1 |
|      | $\Delta k = (\frac{2}{36} + 0.02) \times 49$                                         |   |    |
|      | = 3.7                                                                                |   |    |
|      | $= 4 \text{ N m}^{-1}$                                                               |   | A1 |
|      | Accept $\Delta k = \frac{k_{\text{max}} - k_{\text{min}}}{2}$                        |   |    |
| 1ci  | F is weight of the column of liquid above the area A                                 | Α | B1 |
|      | $\rho = \frac{F}{A} = \frac{m_{fluid}g}{A}$                                          |   |    |
|      |                                                                                      |   | B1 |
|      | $=\frac{(V_{fluid}\rho_{fluid})g}{A}$                                                |   |    |
|      | $=\frac{(hA\rho_{fluid})g}{A}$                                                       |   |    |
|      |                                                                                      |   | A0 |
|      | =h ho g                                                                              |   |    |
| 1cii | U + ke = mg                                                                          | Α |    |
|      | U = mg - ke                                                                          |   |    |
|      | = (0.180)(9.81) - 49(0.030)<br>= 0.2958 N                                            |   | C1 |
|      | $\Delta p A = \Delta h A \rho g$                                                     |   |    |
|      | $U = V \rho g$                                                                       |   |    |
|      | $0.2958 = (2.0 \times 10^{-5})(9.81)\rho$                                            |   | C1 |
|      | $\rho = 1500 \text{ kg m}^{-3}$                                                      |   | A1 |
|      |                                                                                      | 1 | I  |

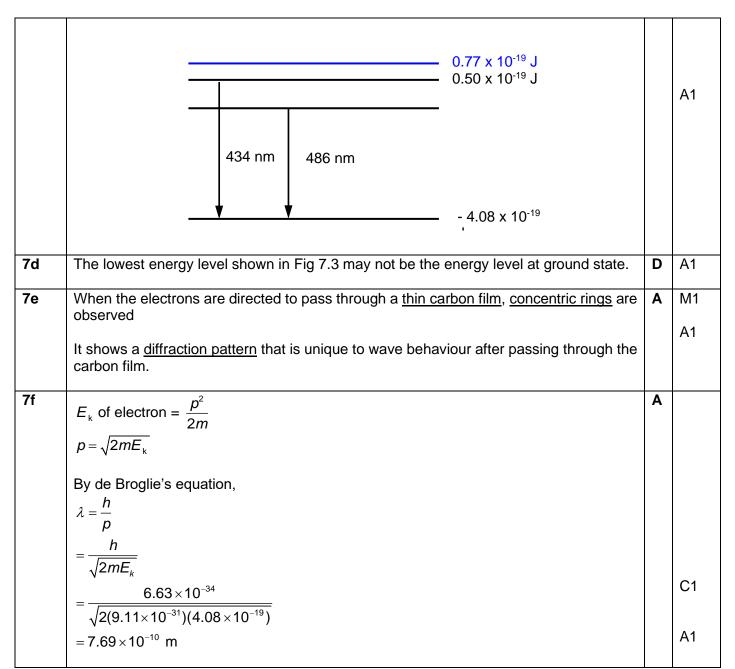
| 2a | The total momentum before collision is <u>non-zero</u> .                              | Α | M1 |
|----|---------------------------------------------------------------------------------------|---|----|
|    | By COM, (total) momentum is never zero, so not possible for both blocks to be at rest |   | A1 |
|    | simultaneously.                                                                       |   |    |
|    |                                                                                       |   |    |

| bi  | By COLM, taking rightwards as positive                                                                                | E |    |
|-----|-----------------------------------------------------------------------------------------------------------------------|---|----|
|     | (3M x 0.40) – (M x 0.25) = (3M x 0.20) + Mv<br>v =0.35 m s <sup>-1</sup>                                              |   | A1 |
| bii | To right / away from block A, as direction to the right is taken as positive in (b)(i)                                | E | B1 |
| C   | relative speeds of approach is non-zero, and relative speeds of separation is zero                                    | Α | M1 |
|     | Relative speed of approach is <u>not equal</u> the relative speed of separation,<br>Hence <u>inelastic</u> collision. |   | A1 |

| 3ai  | work done per unit mass<br>bringing (small test) mass from infinity (to the point)                                                                                                                                                                                                                  | E | B1       |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| 3aii | (near Earth's surface change in) height << radius <b>or</b> height much less than radius potential inversely proportional to radius <b>and</b> radius approximately constant (so potential approximately constant)                                                                                  | A | B1<br>B1 |
| 3b   | curve from <i>r</i> to 4 <i>r</i> , with gradient of decreasing magnitude and starting at $(r, \pm \phi)$ and<br>line passing through $(2r, \pm 0.5\phi)$ and $(4r, \pm 0.25\phi)$<br>line showing potential is negative throughout<br>$\pm 1.0 \phi$                                               | A | B1<br>B1 |
|      | gravitational potential $+0.5\phi$                                                                                                                                                                                                                                                                  |   |          |
| 3ci  | Gain in KE = loss in GPE<br>$\frac{1}{2}m v^2 = 0 - (-GMm / R)$                                                                                                                                                                                                                                     | D | C1       |
|      | At distance R = 3r, $v = \sqrt{\frac{2GM}{3r}} = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{3 \times 6.4 \times 10^6}} = 6.46 \times 10^3 \text{ m s}^{-1}$                                                                                                               |   | C1       |
|      | At distance R = 4r, $v = \sqrt{\frac{2GM}{4r}} = \sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 6.0 \times 10^{24}}{4 \times 6.4 \times 10^6}} = 5.59 \times 10^3 \text{ m s}^{-1}$<br>Change in speed = 6.46 × 10 <sup>3</sup> –5.59 × 10 <sup>3</sup> = 8.7 × 10 <sup>2</sup> m s <sup>-1</sup> |   | A1       |

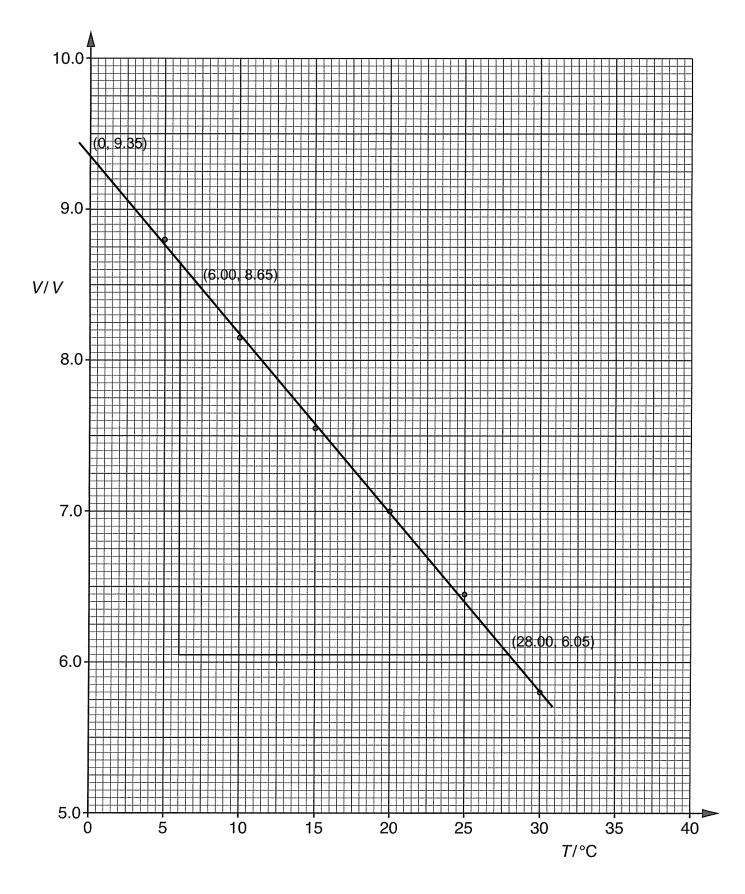

9749/02/ASRJC/2023Prelim

| 4a   | $a = -\omega^2 x$<br>$a = $ acceleration, $x =$ displacement from equilibrium position and $\omega =$ angular frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E | B1             |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|
| 4bi  | $\omega = 2\pi / T$<br>= $2\pi / 4.0$<br>= 1.57<br>= 1.6 rad s <sup>-1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A | B1<br>A0       |
| 4bii | $E = \frac{1}{2}m\omega^{2}x_{0}^{2} \text{ Or } E = \max E_{k} = \frac{1}{2}mv^{2}_{max} = \frac{1}{2}m\omega^{2}x_{0}^{2}$<br>= $\frac{1}{2} \times 36 \times 1.6^{2} \times 0.080^{2}$<br>= 0.29 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A | B1<br>C1<br>A1 |
| 4c   | dome-shaped curve, starting and ending at $E_{\rm K} = 0$<br>maximum $E_{\rm K}$ shown as 0.29 J, position of peak shown at $h = 10.0$ cm<br>line intercepts <i>h</i> -axis at $h = 2.0$ cm and at $h = 18.0$ cm<br>0.4<br>$E_{\rm K}/J$<br>0.3<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4 | D | B1<br>B1<br>B1 |
| 5a   | The field strength at a point equals the <u>negative</u> of the potential gradient there.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Α | (B2)           |
|      | i.e. the electric potential gradient is the electric field strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | B1             |


|       | i.e. the electric potential gradient is the electric field strength the <u>direction</u> of the field is the same as the direction of <u>decreasing</u> potential.                                                                                    |   | B1<br>B1 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| 5bi   | Straight line vertically upward                                                                                                                                                                                                                       | E | B1       |
| 5bii  | E = V/d<br>= 75/(1.2 ×10 <sup>-2</sup> )<br>= 6250 V m <sup>-1</sup>                                                                                                                                                                                  | E | A1       |
| 5biii | gain in kinetic energy (= loss in potential energy) = charge × p.d. or $qV = \frac{1}{2}mv^2$<br>because separation not in expressions<br>so <i>v</i> is independent of separation                                                                    | D | B1<br>A0 |
| 5biv  | (at $x = 0.40$ cm), potential = (-) 75 × 0.40 / 1.2<br>(= (-) 25 V)<br>$\frac{1}{2}mv^2 = qV$<br>$\frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2 = 2 \times 1.60 \times 10^{-19} \times 25$<br>Or<br>$Q = \sqrt{q} / dm$ and $v^2 = 200$ | D | C1<br>C1 |
|       | $a = Vq / dm$ and $v^2 = 2as$                                                                                                                                                                                                                         |   |          |

|      | $v^2 = (2 \times 75 \times 2)$                          | $2 \times 1.60 \times 10^{-1}$            | <sup>9</sup> × 0.40 ×     | $10^{-2}$ ) / (1.2 × $10^{-2}$ × 4 × 1.66 × $10^{-27}$ )                                                                                               |   | (C1)     |
|------|---------------------------------------------------------|-------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
|      |                                                         |                                           |                           |                                                                                                                                                        |   |          |
|      | $v = 4.9 \times 10^4 \text{ m}$                         | 1 S <sup>-</sup> '                        |                           |                                                                                                                                                        |   | A1       |
|      |                                                         |                                           |                           |                                                                                                                                                        |   | <u> </u> |
| 6a   | A progressive means of vibra                            |                                           |                           | energy is carried from one point to another by n the wave.                                                                                             | E | B1       |
|      |                                                         |                                           |                           | he oscillations of the particles in the wave are at of energy of the wave.                                                                             |   | B1       |
| 6b   | Speed, v is def                                         | fined as distan                           | ce travelle               | d divided by the time taken.                                                                                                                           | Ε | B1       |
|      |                                                         |                                           |                           | one cycle of the source, the wave energy one cycle is the time period <i>T</i> .                                                                       |   | B1       |
|      | Since <i>f</i> = 1 / <i>T</i> ,<br>wave speed, <i>v</i> |                                           | nce / time t              | aken )                                                                                                                                                 |   | A0       |
|      |                                                         | 1                                         |                           |                                                                                                                                                        |   |          |
| 6ci  | Angle θ                                                 | amplitude                                 | intensi                   | ty                                                                                                                                                     | Α |          |
|      | 180°                                                    | A                                         | Ι                         |                                                                                                                                                        |   | B1<br>B1 |
|      | 90°                                                     | 0                                         | 0                         |                                                                                                                                                        |   | B1       |
|      | 60°                                                     | 0.50A                                     | 0.25/                     |                                                                                                                                                        |   |          |
|      | intensity ∞ cos                                         | -0                                        |                           |                                                                                                                                                        |   |          |
| 6cii | intensity                                               | angle                                     | θ                         |                                                                                                                                                        | D |          |
|      | zero                                                    | 90°                                       |                           |                                                                                                                                                        |   |          |
|      | maximum                                                 | 0°, 180                                   | <b>)</b> °                |                                                                                                                                                        |   | B1       |
|      | $\frac{I}{2}$                                           | 32.8°, 14                                 | 47°                       |                                                                                                                                                        |   | B1       |
|      | 2                                                       |                                           |                           |                                                                                                                                                        |   |          |
|      | Intensity after p                                       | passing throug                            | h polaroid                | Q, $I_Q = I \cos^2 \theta$                                                                                                                             |   |          |
|      | Intensity after p                                       | passing throug                            | h polaroid                | $R  I_{R} = I_{Q} \cos^2 \theta$                                                                                                                       |   |          |
|      |                                                         |                                           |                           | $=I\cos^4 \theta$                                                                                                                                      |   |          |
| 7a   | energy level. W                                         | Vhen the <u>electr</u><br>energies corres | ons de-exa<br>sponding ta | s move from a lower energy level to a higher<br>cite from a higher level to a lower level, they emit<br>the differences in energy levels of the atoms, | A | M1       |
|      |                                                         |                                           |                           | are fixed, the photons emitted have discrete vels are discrete.                                                                                        |   | A1       |

<u>Examiner's comments:</u> Many students did not explain how the energy of the photon is linked to the energy levels in atoms. A few students described the observations for absorption line spectrum.




| 7c | Energy of photon with wavelength 410 nm<br>_ hc                                               | D | M1 |
|----|-----------------------------------------------------------------------------------------------|---|----|
|    | $\begin{bmatrix} -\frac{1}{\lambda} \\ (6.63 \times 10^{-34})(3.0 \times 10^8) \end{bmatrix}$ |   |    |
|    | $= \frac{410 \times 10^{-9}}{410 \times 10^{-9}}$<br>= 4.85 × 10 <sup>-19</sup> J             |   |    |
|    | Energy level = $4.85 \times 10^{-19} + (-4.08 \times 10^{-19})$<br>= $0.77 \times 10^{-19}$ J |   | M1 |



| 8a   | greater lattice vibrations<br>more frequent collision of electrons with lattice ions /lower drift velocity of the electrons                                                  | Α | B1<br>B1 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| 8bi  | connect cells in series                                                                                                                                                      | E | B1       |
| 8bii | connect cells in parallel                                                                                                                                                    | Е | B1       |
| 8c   | Active cooling could fail/active cooling needs energy input, increasing costs or decreasing system output/ difficult to eliminate passive cooling                            | Α | B1       |
| 8d   | site panel so that there is <u>an air gap</u> around it<br>e.g. mounts panels a small distance above the roof/in open space/clear from<br>obstructions/ spaced out in field. | A | B1       |
| 8ei  | 6.40 V, 7.60 V (2 dp)                                                                                                                                                        | D | A1       |

| 8eii  | little / no change to current at low voltages<br>at lower temperature, greater current at higher voltage                                                                             | Α | B1<br>B1 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------|
| 8eiii | Best-fit straight line drawn<br>(See graph below)                                                                                                                                    | E | B1       |
| 8eiv  | $V = \mu(T_{R} - T) + V_{R}$ Plotting a graph of V against T gives<br>gradient= $-\mu$ and y- intercept= $V_{R} + \mu T_{R}$<br>Use of gradient to determine $\mu$ (see graph below) | A |          |
|       | Gradient = $\frac{8.65 - 6.05}{6.0 - 28.0}$ =- 0.118 (note the dp of the coordinates)<br>$\mu$ = 0.12 (0.118) V °C <sup>-1</sup>                                                     |   | C1<br>A1 |
|       | From graph, y-intercept = 9.35,<br>i.e. $V_R + \mu T_R = 9.35$<br>$6.40 + 0.12T_R = 9.35$                                                                                            |   | C1       |
|       | $T_{\rm R} = 25 \ (24.6) \ ^{\circ}{\rm C}$                                                                                                                                          |   | A1       |
| 8ev   | (7.60 = 0.12 (25-T) + 6.40),<br>T = 15 °C                                                                                                                                            | A | A1       |
| 8evi  | Rectangle drawn below line<br>Correct area indicated (6.0 V and 0.048 A)                                                                                                             | Α | A1       |
| 8evii | Use of area of rectangle or $P = IV$<br>$P_{max} = 4.8 \times 0.10$<br>= 0.48<br>= 0.5 W                                                                                             | D | B1<br>A1 |
| 8fi   | Better chance of capturing photons/ photons of a greater range of frequencies (contained within sunlight) can be captured                                                            | A | B1       |
| 8fii  | Output power increases as angle of incidence on panel decreases /<br>The closer the angle between PV panel and incident sunlight is to 90°, the larger the<br>output power.          | A | B1       |

