ANNEX B

TPJC H2 Math JC2 Preliminary Examination Paper 2

QN	Topic Set	Answers
1	Complex numbers	(i)Since the <u>coefficients</u> of $az^3 - 31z^2 + 212z + b = 0$ are
		all real, <u>complex roots occur in conjugate pair</u> .
		Since a cubic equation has three roots , the third root
		must be a real root.
		(ii) 25 l 100 ¹⁹
		(ii) $a = 25, b = 190, -\frac{1}{25}$
2	Vectors	(ii) 7
		(iii) length of perpendicular from O to AN.
3	Maclaurin series	(a) $3x + \frac{3}{x^2} + 6x^3 + \dots$
		(b)(11) $a=2, b=6$
4	Application of	1,
•	Integration	(a) $\frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + D$
		$\sim \pi$
		$(b)(iii)\sqrt{3}-1-\frac{1}{6}$
5	DRV	
		$(1)\frac{1}{36}$
		$(11)\frac{1}{36}$
		(iii) 0.112
6	Binomial Expansion	(i)0.161
		(ii)60
		(iii) $\therefore \frac{3}{2} \le p \le \frac{4}{2}$
7	Correlation & Lincar	C
'	Regression	ى

		1400 1200 1000 800 600 400 200 0
		(11)(a)0.9809 (b)0.9960
		(iii) The scatter diagram shows that \underline{S} increases at an increasing rate as h increases,
		and for $S = ch^2 + d$, $r \approx 0.9960$ which is closer to 1, so the model $S = ch^2 + d$ is a better model.
		(iv) $S = 0.000182h^2 + 672$ (v)1550
		Estimate for when $h = 2200$ metres is <u>not</u> reliable since $h = 2200$ metres is outside the range of the given data and <u>extrapolation</u> is not a good practice.
8	Normal Distribution	(i)0.309 (ii)0.214 (iii)0.303 (iv) 314
9	Hypothesis Testing	(i) Every dustbin has <u>an equal probability of being</u> <u>selected</u> and the selections of each dustbin are <u>made</u> <u>independently</u> .
		(ii) Since $n = 50$ is <u>large</u> , by <u>Central Limit Theorem</u> , the <u>mean</u> mass of rubbish in dustbins will be approximately normally distributed. (iii) 18.49, 23.6
		Since <i>p</i> -value = $0.013937 > 0.01$, we do <u>not</u> reject H ₀ and conclude that there is <u>insufficient</u> evidence at 1% level of significance to claim that there has been a reduction in the mass of rubbish in dustbins.
		(iv) $n \ge 56, n \in +$

10 P&C, Probability	(i) $\frac{63}{800}$ (ii) $\frac{28}{61}$
	(iii) 504 (iv) 3360

H2 Mathematics 2017 Preliminary Exam Paper 2 Solutions

1(i)	Since the <u>coefficients</u> of $az^3 - 31z^2 +$	212z + b = 0 are <u>all real</u> , <u>complex roots occur in</u>
	<u>conjugate pair</u> .	the third we at most here weat we at
	Since a cubic equation has three roots	, the third root must be a real root.
1(ii)	Since $1-3i$ is a root of $az^3 - 31z^2 + 212$	z + b = 0,
	$a(1-3i)^{3}-31(1-3i)^{2}+212(1-3i)+b=$	= 0
	a(-26+18i)-31(-8-6i)+212(1-3i)	+b = 0
	(-26a+460+b)+(18a-450)i=0	
	Comparing real and imaginary parts:	
	$-26a + 460 + b = 0 \dots (1)$	
	18a - 450 = 0(2)	
	From (2), $a = 25$, $b = 190$	
	(z-(1-3i))(z-(1+3i))	
	$= z^2 - 2z + 10$	
	$25z^3 - 31z^2 + 212z + 190 = (z^2 - 2z + 10)$)(cz+d)
	Comparing coefficient of z^3 : $c=25$	5
	Comparing constant: $190 = 10$ d = 19	∂d
	The real root is $-\frac{19}{25}$.	
2(i)	$\overrightarrow{OA} = \mathbf{a}, \ \overrightarrow{OB} = \mathbf{a} + \mathbf{c}, \ \overrightarrow{OC} = \mathbf{c}$	Alternatively:
	$\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX}$	By Ratio Theorem:
	$= \overrightarrow{OA} + \frac{5}{2}\overrightarrow{AC}$	$\overrightarrow{OC} = \frac{2\overrightarrow{OX} + 3\overrightarrow{OA}}{5}$
	$=\mathbf{a}+\frac{5}{2}(\mathbf{c}-\mathbf{a})$	$\overrightarrow{OX} = \frac{\overrightarrow{SOC} - \overrightarrow{SOA}}{\overrightarrow{OA}}$
	$=\frac{1}{2}(5\mathbf{c}-3\mathbf{a})$	$\overrightarrow{OX} = \frac{1}{2} (5\mathbf{c} - 3\mathbf{a})$
	By midpoint theorem:	
	$\overline{ON} = \frac{\overline{OB} + \overline{OX}}{2}$	
	$\overrightarrow{ON} = \frac{1}{2} \left[\mathbf{a} + \mathbf{c} + \frac{1}{2} (5\mathbf{c} - 3\mathbf{a}) \right]$	
	$=\frac{1}{4}(7\mathbf{c}-\mathbf{a})$	
2(ii)	Area of triangle $OAB = \frac{1}{2} \left \overrightarrow{OA} \times \overrightarrow{OB} \right $	

	$4 = \frac{1}{2} \left \mathbf{a} \times (\mathbf{a} + \mathbf{c}) \right $
	$=\frac{1}{2} \mathbf{a}\times\mathbf{c} \qquad(\because\mathbf{a}\times\mathbf{a}=0)$
	$\Rightarrow \mathbf{a} \times \mathbf{c} = 8$
	Area of triangle $OAN = \frac{1}{2} \left \overrightarrow{OA} \times \overrightarrow{ON} \right $
	$=\frac{1}{2}\left \mathbf{a}\times\frac{1}{4}(7\mathbf{c}-\mathbf{a})\right $
	$=\frac{7}{8} \mathbf{a}\times\mathbf{c} \qquad(\because\mathbf{a}\times\mathbf{a}=0)$
	$=\frac{7}{8}(8)$
	= 7 square units
2(iii)	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right $ is the length of perpendicular from <i>O</i> to <i>AN</i> .
	Alternative answer:
	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right $ is the shortest distance from <i>O</i> to <i>AN</i> .
	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right $ is the area of a parallelogram formed with vector \overrightarrow{OA} and unit vector \overrightarrow{AN} as
	its adjacent sides. (Not recommended here)
	Area of triangle $OAN = 7$
	$\frac{1}{2} \left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right \left \overrightarrow{AN} \right = 7$
	$\left \overrightarrow{OA} \times \frac{\overrightarrow{AN}}{\left \overrightarrow{AN} \right } \right = \frac{14}{\left \overrightarrow{AN} \right }$
	$=$ $\frac{1}{\left \overline{ON}-\overline{OA}\right }$
	$=\frac{14}{ 1(7-2) }$
	$\left \frac{1}{4}\left(\frac{1}{2}-a\right)-a\right $
	$=\frac{1}{ 7\mathbf{c}-5\mathbf{a} }$ (shown)
3 (a)	$e^{2x}\ln\left(1+3x\right)$
	$= \left(1 + 2x + \frac{(2x)^2}{2!} + \dots\right) \left(3x - \frac{(3x)^2}{2} + \frac{(3x)^3}{3} - \dots\right) \text{ where } -1 < 3x \le 1$
	$= (1+2x+2x^2+)(3x-\frac{9}{2}x^2+9x^3)$

	$=3x - \frac{9}{2}x^{2} + 9x^{3} + 6x^{2} - 9x^{3} + 6x^{3} + \dots$
	$= 3x + \frac{3}{2}x^{2} + 6x^{3} + \dots$ where $-\frac{1}{3} < x \le \frac{1}{3}$
3(b)(i)	OR PR
	$\frac{2\pi}{\sin\frac{3\pi}{4}} = \frac{\pi}{\sin\left(\pi - \frac{3\pi}{4} - 2\theta\right)}$
	QR PR
	$\frac{1}{\sin\frac{3\pi}{4}} = \frac{1}{\sin\left(\frac{\pi}{4} - 2\theta\right)}$
	$QR = \frac{\sin \frac{3\pi}{4}}{4}$
	$\sum_{n=1}^{\infty} \sin \frac{\pi}{4} \cos 2\theta - \cos \frac{\pi}{4} \sin 2\theta$
	$\frac{1}{\sqrt{2}}$
	$QR = \frac{\sqrt{2}}{\frac{1}{\sqrt{2}}\cos 2\theta - \frac{1}{\sqrt{2}}\sin 2\theta}}$
	$QR = \frac{1}{\cos 2\theta - \sin 2\theta}$ (shown)
3(b)(ii)	When θ is small,
	$QR \approx \frac{1}{\sqrt{1-1}}$
	$\left(1 - \frac{\left(2\theta\right)^2}{2!}\right) - 2\theta$
	1
	$1-2\theta-2\theta^2$
	$= \left(1 - \left(2\theta + 2\theta^2\right)\right)^{-1}$
	$=1+\left(2\theta+2\theta^{2}\right)+\left(2\theta+2\theta^{2}\right)^{2}+$
	$= 1 + 2\theta + 2\theta^2 + 4\theta^2 + \dots$
	$=1+2\theta+6\theta^2+\dots$
	a = 2, b = 6
4 (a)	
	$= e^x \sin x - \int e^x \cos x dx$
	$= e^{x} \sin x - \left[e^{x} \cos x + \int e^{x} \sin x dx \right]$
	$=e^x \sin x - e^x \cos x - \int e^x \sin x dx$
	Hence,
	$\int e^x \sin x dx = e^x \sin x - e^x \cos x - \int e^x \sin x dx + C$
	$2\int e^x \sin x dx = e^x \sin x - e^x \cos x + C$
	$\int e^x \sin x dx = \frac{1}{2} \left(e^x \sin x - e^x \cos x \right) + D$

$$\begin{aligned} \mathbf{4(b)(i)} & \text{ Area of first rectangle, } x = \frac{k}{n}; \\ A_{1} &= \frac{\frac{k'_{n}}{\sqrt{3-2(k'_{n})-(k'_{n})^{2}}} \cdot \frac{k}{n} = \frac{k^{2}/n^{2}}{\sqrt{\frac{3n^{2}-2nk-k^{2}}{n^{2}}}} = \frac{k^{2}}{n\sqrt{3n^{2}-2nk-k^{2}}} \\ \mathbf{4(b)(ii)} & \text{ Area of second rectangle,} \\ x &= \frac{2k}{n}; A_{2} = \frac{\frac{2k'_{n}}{\sqrt{3-2(2k'_{n})-(2k'_{n})^{2}}} \cdot \frac{k}{n} = \frac{2k^{2}}{n\sqrt{3n^{2}-2n(2k)-(2k)^{2}}} \\ \text{ Area of third rectangle,} \\ x &= \frac{3k}{n}; A_{3} = \frac{\frac{3k'_{n}}{\sqrt{3-2(2k'_{n})-(3k'_{n})^{2}}} \cdot \frac{k}{n} = \frac{3k^{2}}{n\sqrt{3n^{2}-2n(3k)-(3k)^{2}}} \\ \text{ By observation, combined area of n rectangles:} \\ A &= \sum_{n=1}^{n} \frac{nk^{2}}{n\sqrt{3n^{2}-2nk-r^{2}k^{2}}}, \\ \text{ where } a = 2 \text{ and } b = 1 \\ \text{ 4(b)(ii)} & \sum_{n=1}^{\infty} \frac{rk^{2}}{n\sqrt{(3n^{2}-ank-r^{2}k^{2})}} \\ &= \text{ Area under curve from } x = 0 \text{ to } x = \sqrt{3}-1 \\ &= \int_{0}^{\sqrt{3-1}} \frac{-\frac{1}{\sqrt{2}(-2-2x)-1}}{\sqrt{3-2x-x^{2}}} dx \\ &= -\frac{1}{2}\int_{0}^{\sqrt{3-1}} \frac{-\frac{2-2x}{\sqrt{3-2x-x^{2}}}}{\sqrt{3-2x-x^{2}}} dx - \int_{0}^{\sqrt{3-1}} \frac{1}{\sqrt{4-(x+1)^{2}}} dx \\ &= -\frac{1}{2}\left[\frac{\sqrt{3-2x-x^{2}}}{\sqrt{3}-2x-x^{2}}\right]_{0}^{\sqrt{3-1}} - \left[\sin^{-1}\left(\frac{x+1}{2}\right)\right]_{0}^{\sqrt{3-1}} \\ &= -\left[\sqrt{3}-2x-x^{2}\right]_{0}^{\sqrt{3-1}} - \left[\sin^{-1}\left(\frac{x+1}{2}\right)\right]_{0}^{\sqrt{3-1}} \\ &= -\left[1-\sqrt{3}\right] - \left[\sin^{-1}\left(\frac{\sqrt{3}}{2}\right) - \sin^{-1}\frac{1}{2}\right] \\ &= \sqrt{3}-1 - \frac{\pi}{6} \quad (exact) \end{aligned}$$

5(i)	$\sum_{i=1}^{6} \mathbf{P}(\mathbf{X} - \mathbf{x}) = 1$
	$\sum_{r=1}^{r} P(x=r) = 1$
	$k^{r=1}$ k+3k+5k+7k+9k+11k=1
	. 1
	$k = \frac{1}{36}$
5(ii)	E(X) = 1(k) + 2(3k) + 3(5k) + 4(7k) + 5(9k) + 6(11k)
	=161k
	_ 161
	$-\frac{-36}{36}$
5(iii)	Required Probability
	$= P(\{6,6,4\}) + P(\{6,5,5\})$
	$=\left(\frac{11}{2}\right)^{2}\left(\frac{7}{2}\right)\frac{3!}{2!}+\left(\frac{11}{2}\right)\left(\frac{9}{2}\right)^{2}\frac{3!}{2!}$
	(36)(36)2!(36)(36)2!
	$=0.112$ (3 s.f.) Accept: $\frac{1738}{1000000000000000000000000000000000000$
	15552 7776
6 (i)	Let X be the number of rocks containing fossils out of 20 rocks
U(I)	$X \square B(20, 0.07)$
	$P(X \ge 3) = 1 - P(X \le 2)$
	= 0.161 (3 s.f.)
6(ii)	Let Y be the number of rocks containing fossils out of 20 rocks. $V \square B(n = 0.07)$
	$P(Y \ge 3) \ge 0.8$
	Method 1a: Using GC Table
	$n \qquad P(Y \ge 3)$
	59 0.79085 < 0.8
	60 0.80023 > 0.8
	61 0.80925 > 0.8
	Hence, least $n = 00$.
	Method 1b: Using GC Table
	$P(Y \le 2) \le 0.2$
	$n \qquad P(Y \le 2)$
	59 0.20915 > 0.2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Hence, least $n = 60$.
	<u>Method 2: Using the binomial distribution function</u> $P(V \le 2) \le 0.2$
	$P(Y \le 2) \le 0.2$
	$P(I = 0) + P(I = 1) + P(I = 2) \le 0.2$
	$0.93^{n} + n(0.07)(0.93)^{n-1} + \frac{n(n-1)}{2}(0.07^{2})(0.93)^{n-2} \le 0.2$
	Lusing GC to sketch the graph:
	Hence, least $n = 60$.
6(iii)	Let <i>W</i> be the number of fossils of <i>zilantophis schuberti</i> in a random sample of 10 rocks. $W \square B(10, p)$

	$P(W = 3) > P(W = 2)$ $\frac{10!}{3!7!} p^{3}(1-p)^{7} > \frac{10!}{2!8!} p^{2}(1-p)^{8}$ $120 p^{3}(1-p)^{7} > 45 p^{2}(1-p)^{8}$ $8p > 3(1-p) \text{(Since } 0 \frac{8}{3} p > 1-p p > \frac{3}{11} P(W = 3) > P(W = 4) \frac{10!}{3!7!} p^{3}(1-p)^{7} > \frac{10!}{4!6!} p^{4}(1-p)^{6} 120 p^{3}(1-p)^{7} > 210 p^{4}(1-p)^{6}$
	$4(1-p) > 7p \qquad (Since \ 0 1-p > \frac{7}{4}p 4$
	$p < \frac{1}{11}$ $\therefore \frac{3}{11}$
	11 11
7(i)	S
7(1)	$ \begin{array}{c} 1400 \\ 1200 \\ 1000 \\ 800 \\ 600 \\ 400 \\ 200 \\ 0 \end{array} $
	0 500 1000 1500 2000 h
7(ii)	(a) $r = 0.980867 \approx 0.9809$ (4 d.p.) (b) $r = 0.996039 \approx 0.9960$ (4 d.p.)
7(iii)	The scatter diagram shows that <u>S</u> increases at an increasing rate as <u>h</u> increases, and for $S = ch^2 + d$, <u>$r \approx 0.9960$ which is closer to 1</u> , so the model $S = ch^2 + d$ is a better model.
7 (iv)	The equation of regression line is $S = 0.0001822853073h^2 + 671.7261905$ i.e. $S = 0.000182h^2 + 672$ (3 s.f.)
7 (v)	$S = 0.00018229(2200)^{2} + 671.73$ = 1554.0136 = 1550 metres (3 s.f.)

	Estimate for when $h = 2200$ metres is <u>not</u> reliable since $h = 2200$ metres is outside the range of the given data and <u>extrapolation</u> is not a good practice.
8(i)	$X \square N(296, 8^2) \qquad Y \square N(290, 12^2)$ Required probability = [P(X > 300)] = 0.30854 (5 s.f.) (0.3085375322) = 0.309 (3 s.f.)
8(ii)	Let <i>W</i> be the number of days in which Albert processes more than 300 kg of raw material on that day out of 15 days. $W \sim B(15, 0.30854)$ P(W = 4) = 0.214 (3 s.f.)
8(iii)	Let $S = Y_1 + Y_2 - 2X$ $E(S) = E(Y_1) + E(Y_2) - 2E(X) = 2 \times 290 - 2 \times 296 = -12$ $Var(S) = 2Var(Y) + 2^2 Var(X) = 2 \times 12^2 + 2^2 \times 8^2 = 544$ Hence, $S \square N(-12, 544)$
	P(S > 0) = 0.303 (3 s.f.) (0.3034526994)
8(iv)	$X \square N(\mu, 8^{2})$ $P(X > 300) = P\left(Z > \frac{300 - \mu}{8}\right) \ge 0.95$ $P\left(Z \le \frac{300 - \mu}{8}\right) \le 0.05$ $\frac{300 - \mu}{8} \le -1.6449$ $\mu \ge 313.1592$ Least value of $\mu = 214 \log (2 \circ f)$
9(i)	Exact value of $\mu = 314$ kg (3 s.f.) Every dustbin has an equal probability of being selected and the selections of each
	dustbin are <u>made independently</u> .
9(ii)	Since $n = 50$ is <u>large</u> , by <u>Central Limit Theorem</u> , the <u>mean</u> mass of rubbish in dustbins will be approximately normally distributed.
9 (iii)	Unbiased estimate of population mean, $\overline{x} = \frac{924.5}{50} = 18.49$ Unbiased estimate of population variance $s^2 = \frac{1}{40} \left[18249.2 - \frac{924.5^2}{50} \right] = 23.575$ (5 s.f.)
	$= 23.6 (3 \text{ s.f.})$ Let μ be the population mean mass of rubbish, in kg, in a domestic dustbin. To test: H ₀ : $\mu = 20$ against H ₁ : $\mu < 20$ at 1% level of significance Since $n = 50$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(20, \frac{23.575}{50}\right)$ approximately under H ₀ . Test Statistic: $Z = \frac{\overline{X} - 20}{ 23.575/ } \sim N(0,1)$ approximately under H ₀ .

	Using GC, $[\bar{x} = 18.49, s^2 = 23.575, n = 50]$
	$z_{r,r} = -2.199$, <i>p</i> -value = 0.013937 (5 s.f.)
	Since <i>p</i> -value = $0.013937 > 0.01$ we do not reject H ₀ and conclude that there is
	insufficient evidence at 1% level of significance to claim that there has been a reduction in
	the mass of rubbish in dustbins.
9 (iv)	For H ₀ to be rejected, $z_{test} = \frac{18.49 - 20}{\sqrt{23.575}} \times \sqrt{n} < -2.3263$
	<i>n</i> > 55.954
	Range of values of <i>n</i> is $n \ge 56$, $n \in \Box^+$
	[Also Accept: $n > 55$, $n \in \Box$ (or equivalent form)]
10(i)	Required probability
	$=\frac{30}{30}\times\frac{45}{30}\times\frac{25}{30}\times\frac{15}{30}\times\frac{45}{30}\times4$
	100 120 100 100 120 100 120 100
	$=\frac{63}{200}$
10(")	800
10(11)	Required probability (0.2)(0.5)(0.75) + (0.8)(0.5)(0.25)
	$=\frac{(0.2)(0.5)(0.75) + (0.8)(0.5)(0.25)}{(0.2)(0.75) + (0.8)(0.125)(0.75) + (0.8)(0.875)(0.25)}$
	28
	$=\frac{20}{61}$
10 (iii)	Number of different possible codes
	$= {}^{9}C_{2} \times 2! \times {}^{7}C_{1}$
	= 504
10 (iv)	Method 1: Complementary Method
	Number of possible arrangements
	$= \left[{}^{4}C_{3} \times {}^{5}C_{2} \times 5! \right] - \left[\left({}^{4}C_{3} \times 3! \right) \times {}^{5}C_{2} \times 3! \right]$
	= 3360
	Method 2: List by Cases
	Case 1: All the even digits are separated
	${}^{4}C_{3} \times {}^{5}C_{2} \times 2! \times 3! = 480$
	Case 2: Exactly two even digits are next to each other (and the third even digit is separated)
	${}^{4}C_{3} \times ({}^{3}C_{2} \times 2!) \times {}^{5}C_{2} \times 3! \times {}^{2}C_{1} = 2880$
	Number of possible arrangements
	= 480 + 2880
	= 3360