
Answers for MJC 2008 H1 Chem Prelim Paper 2

1(a) The graph below represents the first ionization energies from beryllium to strontium. Explain the general trend presented by the graph.

Down the group, from Be to Mg,

Nuclear charge increases as proton number increases. Valence electrons are added to a next outer shell \Rightarrow valence electrons are further away from the nucleus.

Significant increase in shielding effect outweighs the increase in nuclear charge.

Effective nuclear charge decreases Weaker electrostatic force of attraction between nucleus and valence electrons

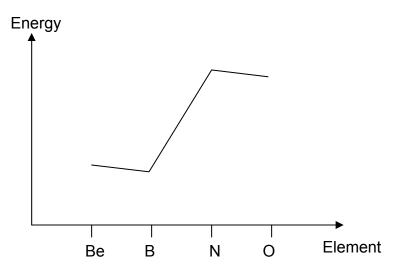
 \Rightarrow lonization energy decreases

(b) Write the electronic configurations of chromium ion, Cr^{3+} .

[1]

[2]

 $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$


(c) Between Cr^{3+} and F^{-} , state and explain which ion would be deflected the most when they are passed through an electric field?

[2]

Extent of deflection $\propto \frac{q}{m}$ $\frac{q}{m}$ ratio for $Cr^{3+} = \frac{3}{52} = 0.0577$ $\frac{q}{m}$ ratio for $F^{-} = \frac{1}{19} = 0.0526$

Therefore Cr³⁺ will deflect the most

(d) The first ionization energies of beryllium, boron, nitrogen and oxygen are presented in the graph below.

Explain the decrease in ionization energy from:

(i) Be to B

Be: 1s² 2s² B: 1s²2s²2p¹

- The 2p electron in B is at a higher energy level than the 2s electron in Be
- Hence, less energy is required to remove the 2p electron from B compared to Be.

(ii) N to O

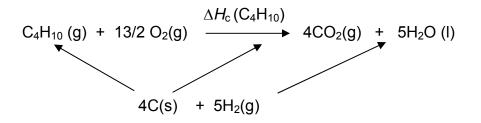
N: $1s^2 2s^2 2p^3$ O: $1s^2 2s^2 2p^4$

- There is inter-electron repulsion between the paired electrons in the 2p orbital of O.
- Hence, less energy is required to remove the 2p electron from O compared to N

[Total: 8]

[3]

- 2 Certain enthalpy changes such as enthalpy change of formation cannot be found by direct experiment. Instead it can be found by applying Hess' Law to simple energy cycles.
- (a) 500 cm^3 of water was heated in a calorimeter by burning a 1.30 g of butane, C_4H_{10} . The temperature rise of the water recorded was 30°C. Calculate the enthalpy change of combustion of butane.


[2]

Heat absorbed, Q = mc∆T = 500 x 4.18 x 30 J = 62700 J

No of moles of butane burnt = 1.30/58= 2.24×10^{-2}

Heat absorbed by water, Q = Heat released by combustion of butane, Q'

Q' = $\Delta H_c (C_4 H_{10}) \times n$ $\Delta H_c (C_4 H_{10}) = -\frac{62700}{2.24 \times 10^{-2}} = -2799 \text{ kJ mol}^{-1}$ (b) The energy cycle for the complete combustion of butane is shown below.

Using your answer in part (a) and the following enthalpy changes, calculate the enthalpy change of formation of butane.

 $\Delta H_{\rm c}({\rm C}) = -393.5 \text{ kJ mol}^{-1}$ $\Delta H_{\rm c}({\rm H}_2) = -285.8 \text{ kJ mol}^{-1}$

[1]

By Hess's Law,

 $\Delta H_{\rm f}({\rm C}_{4}{\rm H}_{10}) = 4\Delta H_{\rm c}({\rm C}) + 5\Delta H_{\rm c}({\rm H}_{2}) - \Delta H_{\rm c}({\rm C}_{4}{\rm H}_{10})$ = 4(-393.5) + 5(-285.8) - (-2799) $= -204 \text{ kJ mol}^{-1}$

- (c) Chlorofluorocarbons, CFCs, are small alkane molecules where a few of the hydrogen atoms have been replaced by chlorine atoms and fluorine atoms. The use of CFCs in daily life products have been banned in many countries because CFCs are environmentally hazardous.
 - (i) State one use of CFCs.

CFCs commonly used as refrigerants or aerosols

(ii) Why is CFCs an environmental concern?

[1]

CFCs causes the destruction/depletion of the ozone layer.

[Total: 4]

3(a) Explain what is meant by the *lattice energy* of an ionic compound.

[1]

The energy released when one mole of the ionic compound is formed from its constituent gaseous ions at 298K and 1 atm.

(b) Based on their lattice energies, explain why MgO is preferably used as refractory lining for furnaces rather than MgCl₂,

[2]

radius of anion, $r_-: O^{2^-} < Cl^$ charge of anion, $r_-: O^{2^-} > Cl^-$

 $|\Delta H_{latt}|$: MgO > MgCl₂

Mg²⁺ and O²⁻ are held together by stronger electrostatic forces of attraction.

Hence MgO has a higher melting which makes it a better choice as a refractory lining.

(c) MgCl₂ is highly soluble in water and MgO is only sparingly soluble in water. Give an explanation for the observation.

[2]

Both MgCl₂ and MgO have giant ionic lattice structure. MgCl₂ is highly soluble because the formation of ion-dipole bonds release energy which causes the dissociation of ions from the lattice structure.

MgO is only sparingly soluble because of its highly exothermic lattice energy.

(d) MgCl₂ and MgO are added to separate aqueous solutions, each containing a few drops of phenolphthalein. Predict, with reasoning, the expected observations. Support your answers with any relevant equations.

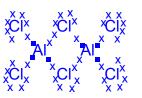
[3]

For MgCl₂, the phenolphthalein solution will remain colourless as the Mg²⁺ ions will polarised water to such an extent that hydrolysis occurs to give a slightly acidic solution (pH \approx 6.5)

 $\begin{array}{l} \mathsf{MgCl}_2(s) + \mathsf{aq} \rightarrow \left[\mathsf{Mg}(\mathsf{H}_2\mathsf{O})_6\right]^{2^+}(\mathsf{aq}) + 2\mathsf{Cl}^{-}(\mathsf{aq}) \\ \left[\mathsf{Mg}(\mathsf{H}_2\mathsf{O})_6\right]^{2^+}(\mathsf{aq}) \rightleftharpoons \left[\mathsf{Mg}(\mathsf{H}_2\mathsf{O})_5(\mathsf{OH})\right]^{+}(\mathsf{aq}) + \mathsf{H}^{+}(\mathsf{aq}) \end{array}$

For MgO, the phenolphthalein solution will turn pink as MgO dissolves slightly in water to give a weakly alkaline solution (pH \approx 9)

MgO (s) + H₂O(I) \rightleftharpoons Mg²⁺ (aq) + 2OH⁻(aq)


(e) Unlike magnesium chloride, aluminium chloride is a covalent compound. In the gaseous state, $AICI_3$ has an apparent M_r of 267.0.

Draw a dot-and-cross diagram to illustrate the bonding of

(i) Magnesium chloride

 $\left(Mg \right)^{2+} 2 \left(\begin{array}{c} xx \\ x \\ x \\ xx \\ xx \end{array} \right)^{-}$

(ii) Aluminium chloride in the gaseous state

[2]

(f) Unlike all other Group II oxides, beryllium oxide, BeO, is amphoteric in nature, like aluminium oxide, Al_2O_3 . Suggest a reason for their similarity in chemical properties.

[1]

The similarity is due to the diagonal relationship. Al and Be have similar charge density.

[Total: 11]

4(a) Certain chlorides and oxides of period 3 elements dissolve in water.

Elements **K**, **L** and **M** are in Period 3. Chlorides of **K** and **L** dissolve in water to form a neutral solution (pH = 7) and an acidic solution ($pH \approx 3$) respectively. Oxide of element **M** is found to be insoluble in water, whereas its chloride forms a strongly acidic solution ($pH \approx 2$).

(i) Suggest the identity of elements **K** and **L** and with the aid of equations, explain the above observations as fully as you can.

[5]

Element K is Na.

Na⁺ ion has low charge density. Hence, only hydration takes place with no hydrolysis, hence NaCl (aq) is neutral with pH 7.

NaCl (s) +aq \rightarrow Na⁺ (aq) + Cl (aq)

Element L is Al.

 AI_2CI_6 undergoes both hydration and hydrolysis in water. AI^{3+} has very high charge density. Hence, AI^{3+} ion polarises its surrounding water molecules, weakening the O-H bond such that H⁺ ions are released into solution. The solution is acidic (pH \approx 3).

 $\begin{array}{l} Al_2 Cl_6(s) + 12 H_2 O(I) \rightarrow 2 [AI(H_2 O)_6]^{3+}(aq) + 6 CI^{-}(aq) \\ [AI(H_2 O)_6]^{3+}(aq) \rightarrow [AI(H_2 O)_5(OH)]^{2+}(aq) + H^{+}(aq) \end{array}$

(ii) Identify element **M** and with the aid of an equation, explain why the chloride of **M** forms a strongly acidic solution.

[2]

Element M is Si. SiCl₄ undergo complete hydrolysis in water to give strongly acidic solution (pH \approx 2).

 $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCI$

[Total: 7]

5 Calcium hydroxide is a white solid which is only sparingly soluble in water. 1.85 g of Ca(OH)₂ will dissolve in 100 cm³ of water. Ammonia is a pungent gas which is very soluble, 89.9 g of NH₃ dissolves in 100 cm³ of water. The pH of saturated aqueous Ca(OH)₂ and NH₃ solution are 13.7 and 13.0 respectively.

Both compounds are useful for agricultural purposes. Calcium hydroxide can be used to control the pH level in soil while ammonia is reacted with nitric acid to produce ammonium nitrate for fertilizing uses.

In gardening, the pH level of the soil is very important. Soil pH is an important consideration for farmers and gardeners for several reasons, including the fact that many plants and soil life forms prefer either alkaline or acidic conditions. However, some diseases tend to thrive when the soil is too alkaline or acidic, and that the pH can affect the availability of nutrients in the soil.

Certain plants such as hydrangea will form flowers of different colours according to the pH of the soil. To encourage blue hydrangea flowers, the soil must have a pH of 5.2-5 and pH of 6.0-6.2 for pink blooms.

To raise the pH level of the soil, the gardener can adopt the liming method. The two common choice of lime is garden lime containing $CaCO_3$ and quicklime, CaO.

Quicklime is caustic and cannot be applied directly to the soil, instead it is spread around the land in heaps to absorb rain and form slaked lime $(Ca(OH)_2)$, which is then spread on the soil. Their use is prohibited by the organic standards and while fast acting, the effect is short lived in comparison to the garden lime.

(a) Define the term pH.

 $pH = -lg[H^+]$

(b) (i) Calculate the concentration in mol dm^{-3} of

I saturated calcium hydroxide solution

 $[Ca(OH)_2]_{saturated solution} = 0.247 \text{ moldm}^{-3}$

II saturated ammonia solution

 $[NH_3]_{saturated solution} = 52.9 \text{ moldm}^{-3}$

[2]

[1]

(ii) Hence, explain whether calcium hydroxide is a strong or weak base.

```
[Ca(OH)_{2}] \equiv 2[OH^{-}]_{Ca(OH)_{2}}[OH^{-}]_{Ca(OH)_{2}} = 2 \times 0.247= 0.494 \text{ moldm}^{-3}[OH^{-}] = 10^{-0.3}= 0.501 \text{ moldm}^{-3}Since [OH^{-}] = [OH^{-}]_{Ca(OH)_{2}}\Rightarrow Ca(OH)_{2} 100\% \text{ dissociated.}Ca(OH)_{2} \text{ is a strong base.}
```

- (b) A blue hydrangea is planted in a plot of soil. The pH of the soil is 5.1 and the volume of water in the soil is 500 cm³.
 - (i) Calculate the minimum concentration of H⁺ ions required for the blue hydrangea to change to pink color.

Minimum pH for pink hydrangea = 6.0 $[H^+]_{final} = 10^{-6.0}$ = 1.00 x 10⁻⁶ moldm⁻³

(ii) Calculate the minimum volume of 4x10⁻⁵ mol dm⁻³ Ca(OH)₂ needed to change the color of the hydrangea to pink.
 (Ignore the contribution of H⁺ and OH⁻ ions from the auto-ionisation of water)

Let the volume of hydroxide ions to be added be V.

 $[H^{+}]_{initial} = 10^{-(5.1)}$ = 7.943 x 10⁻⁶ moldm⁻³ H⁺ = OH⁻

Initial number of moles of $H^+ = 7.943 \times 10^{-6} \times 0.5$ = 3.972 x 10⁻⁶

Number of moles of OH⁻ required to react with $H^+ = 2 \times 4 \times 10^{-5} \times V$

Number of moles of H⁺ unreacted = $3.972 \times 10^{-6} - 8 \times 10^{-5} \times V$

 $[H^{+}]_{\text{final}} = \frac{[H^{+}]_{\text{initial}} - ([OH^{-}] \times V)}{0.5 + V}$ $V = \underline{0.0429 \text{ dm}^{3}}$

[3]

[2]

(c) Suggest why garden lime has a longer lasting effect than quicklime?

[1]

Garden lime has a longer lasting effect as the CO_3^{2-} is a weak base and will only undergo partial dissociation to release OH^- ions therefore the release of OH^- ions will be over a period of time.

(d) A common advice given to aspiring gardeners is: "Never lime and fertilize at the same time". Explain the rationale behind the advice.

[1] Lime is basic $(CaCO_3 \text{ and } Ca(OH)_2)$ and fertilizers such as NH_4NO_3 are acidic. Therefore the lime and fertilizer will undergo neutralization reaction, thus rendering them useless.

[Total: 10]

Section B (40 Marks)

Answer **two** of the three questions in this section. Begin each section on a fresh page.

- **6(a)** A commonly used laboratory procedure to test for the presence of manganese (II), Mn^{2^+} ions is to react them with a sodium salt, $NaRO_n$, where **R** is a period 6 element. A positive test for Mn^{2^+} is indicated by the formation of a dark purple colour due to the presence of MnO_4^- ions in solution. It is found in an experiment that 30.00 cm³ of 0.1 mol dm⁻³ of Mn^{2^+} reacts with 15.00 cm³ of 0.5 mol dm⁻³ of NaRO_n. In the process, aqueous **R**³⁺ ion is formed.
 - (i) Let x be the oxidation number of R in NaRO_n. Copy the half-equation as shown below onto your writing paper and complete the half-equation by filling in the blank.

$$R^{x+}$$
 + $(x-3)$ e $\rightarrow R^{3+}$

(ii) Calculate the number of moles of Mn^{2+} required to react with 1 mole of $NaRO_n$.

No. of moles of NaRO_n in 15.00 cm³ = 7.50×10^{-3}

No. of moles of Mn^{2+} in 30.00 cm³ = 3.00 x 10⁻³

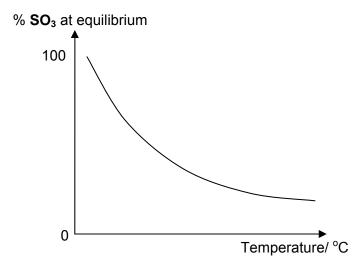
No. of moles of Mn^{2+} that reacts with 1 mole of $NaRO_n$

$$= \frac{3 \times 10^{-3}}{7.5 \times 10^{-3}}$$
$$= 0.4$$

(iii) Hence, deduce the oxidation number of \mathbf{R} in NaRO_n and the value of \mathbf{n} .

Balancing electrons: (x - 3) = 0.4 x 5 x = +5

To find **n**, (+1) + (+5) + **n**(-2) = 0 **n** = $\underline{3}$ (iv) The formula mass of NaRO_n is 280.0. Determine the Ar of **R** and suggest the identity of **R**.


```
23 + (Ar of R) + 16 x 3 = 280
Ar of R = <u>209</u>
```

R is Bi

(b) For MnO₄⁻ ions to act as an oxidizing agent, it has to be acidified with sulphuric acid. Sulphuric acid is manufactured by the Contact Process which involves the following reaction:

 $2SO_2(g) + O_2(g) \implies 2SO_3(g)$

The percentage of SO₃ obtainable at equilibrium is plotted against the operating temperature.

(i) Explain whether the formation of SO₃ is an exothermic or endothermic process.

When temperature increased, % SO₃ at equilibrium decreases, which means backward reaction is favored.

By Le Chatelier's Principle, when temperature increases, the equilibrium position will shift to favor the endothermic reaction to absorb heat

 \Rightarrow Backward reaction is endothermic.

 \Rightarrow Forward reaction is exothermic

Therefore the formation of SO3 is exothermic

[7]

(ii) Write an expression for the equilibrium constant, K_c.

$$K_{c} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]}$$

(iii) Given that in a 3 dm³ vessel, there are 0.2 moles of SO₂, 0.3 moles of O₂ and 4 moles of SO₃ at equilibrium. Calculate the K_c value.

 $K_{c} = 4000 \text{ mol}^{-1} \text{dm}^{3}$

(c) (i) Describe the shapes and state the bond angles of SO₂ and SO₃. Explain their shapes in terms of the numbers and types of electron pairs they contain.

There are 3 bond pairs and 0 lone pairs about S in SO₃. To minimize repulsion and maximize stability, the 3 electron pairs are directed to the corners of an equilateral triangle. Shape of SO₃ is <u>trigonal planar</u> with bond angle of <u>120°</u>.

There are 2 bond pairs and 1 lone pairs about S in SO₂. To minimize repulsion and maximize stability, the 3 electron pairs are directed to the corners of an equilateral triangle. Lone pair – Bond pair repulsion > Bond pair – Bond pair repulsion Shape of SO₂ is **bend** with bond angle of **118/119°**.

(ii) Indicate whether the SO_2 and SO_3 are polar or non-polar.

 SO_3 is <u>non-polar</u>. SO_2 is <u>polar</u>. [4]

(iii) Sulphur dioxide (SO₂) and sulphur trioxide (SO₃) have different boiling points as shown in the table below.

Compound	Boiling Point / °C
SO ₂	-10
SO ₃	45

With reference to the structure and bonding, explain why SO_2 and SO_3 have different boiling points.

[7] SO_2 and SO_3 have simple molecular structures . Molecular size of SO_3 is larger than SO_2 . The extent of distortion of electron cloud in SO_3 is greater than SO_2 . More energy is required to break the more extensive and stronger van der Waals forces between SO_3 molecules. Hence, the boiling point of SO_3 is higher than SO_2 .

(d) A few drops of sulphuric acid were added to a solution containing equal amounts of H₂CO₃ and NaHCO₃. With the aid of an equation, explain the change in pH of the solution.

When a small amount of H_2SO_4 is added,

 $HCO_3^- + H^+ \rightarrow H_2CO_3$

 H^+ is removed as H_2CO_3 .

[H⁺] is slightly changed and pH of the solution remains fairly constant.

[Total: 20]

[2]

14

7(a) Ethyl propanoate, an ester, is found naturally in apple juice, grapefruit peel and strawberries. Ethyl propanoate can be hydrolysed by aqueous NaOH.

 $C_2H_5OCOCH_2CH_3 + OH^- \rightarrow C_2H_5OH + ^OCOCH_2CH_3$

The initial rate of the hydrolysis reaction between the ester and NaOH was measured in a series of experiments at a constant temperature. The results are obtained below:

Experiment	Initial conc. of NaOH / mol dm ⁻³	Initial conc. of ester / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	0.020	0.010	1.80 x 10 ⁻³
2	0.020	0.015	2.70 x 10 ⁻³
3	0.030	0.015	4.05 x 10 ⁻³
4	0.060	0.020	-

(i) Use the data in the table to deduce the order of reaction with respect to the ester and the order of reaction with respect to OH⁻.

Comparing expt 1 and 2, when [ester] increased by 1.5 times while keeping $[OH^-]$ constant, initial rate increased by 1.5 times. Hence, order of reaction wrt [ester] is <u>1</u>.

Comparing expt 2 and 3, when $[OH^-]$ increased by 1.5 times while keeping [ester] constant, initial rate increased by 1.5 times. Hence, order of reaction wrt $[OH^-]$ is <u>1</u>.

(ii) Calculate the initial rate of reaction for Experiment 4 and the rate constant, k.

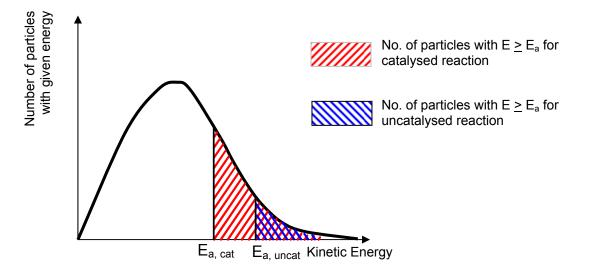
Using expts 1 and 4,

[5]

 $\mathbf{x} = (3 \times 2 \times 1.80 \times 10^{-3})$ = <u>1.08 x 10⁻² mol dm⁻³ s⁻¹</u>

Using expt 1

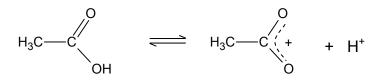
 $1.8 \times 10^{-3} = \mathbf{k}(0.02)(0.01)$ $\mathbf{k} = \underline{9 \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}}$


- (b) Hydrolysis of the ester can also be carried out with water. However, this method is so slow that it is never used.
 - (i) Suggest a reason to explain why the hydrolysis is slow using water.

Water has a low concentration of OH⁻

[1]

(ii) Ester hydrolysis can be catalyzed by dilute HCI. With the aid of a Maxwell-Boltzmann curve, explain the effect of catalyst on the rate of reaction.


[4]

When the catalyst dilute HCl is added, the activation energy, E_a is lowered via an alternative reaction pathway and the number of particles with $E \ge E_a$ is increases. Number of effective collisions per unit time increases. Since rate of reaction is proportional to number of effective collisions per unit time, hence rate of reaction increases.

(c) With reference to the structure of ethanoic acid, explain why sodium hydroxide will only react with ethanoic acid and not ethanol.

[2]

- Ethanoic acid is a stronger acid than ethanol
- The negative charge is delocalised over two oxygen atoms in the carboxylate anion, hence stabilising the carboxylate anion relative to acid.
- There is a greater tendency for the carboxylic acid to ionise compare to alcohol.

(d) Compound P, C₆H₁₀O₃, is a sweet smelling solid. When P is heated with dilute HCl, 2 isomeric compounds Q and R with the molecular formula of C₃H₆O₂ are formed. Compound Q is able to dissolve in CaCO₃ (aq) but not compound R. Compound R gives an orange precipitate with 2,4-dinitrophenylhdrazine but does not show any observable change with a mixture of ammonia and silver nitrate. Compound R gives a yellow precipitate with hot alkaline iodine. On reaction with PCl₅, R gives dense white fumes.

Deduce the identities for the compounds **P**, **Q** and **R** and explain the chemistry of the reactions involved.

[8] [Total: 20]

P, a sweet smelling compound undergoes acid hydrolysis with hot dilute HCI to give Q and R.

 \Rightarrow P is an ester

 \Rightarrow Q and P are either alcohol or carboxylic acid

Q undergoes acid-carbonate/neutralization with CaCO₃ but not R

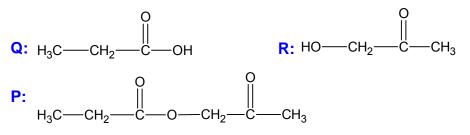
 \Rightarrow Q is a carboxylic acid

 \Rightarrow R is an alcohol

R undergoes condensation with 2, 4-dinitrophenylhydrazine to give yellow ppt of hydrazone

 \Rightarrow R is a carbonyl

R does not undergo oxidation with a mixture of ammonia and silver nitrate/Tollen's reagent. \Rightarrow R is a ketono

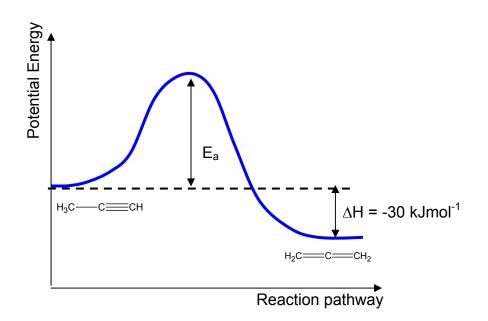

 \Rightarrow R is a ketone

R undergoes oxidation with hot alkaline iodine/lodoform test to give yellow ppt of CHI_3

 \Rightarrow R contains the

CH₃ structure

R undergoes nucleophilic substitution with PCI_5 to give white fumes of HCI \Rightarrow R is an alcohol


8(a) Methylacetylene is an alkyne with the chemical formula $CH_3C\equiv CH$. It is a component of MAPP gas along with its isomer propadiene, which is commonly used in gas welding. Methylacetylene exists in equilibrium with its isomer, the mixture of methylacetylene and propadiene being called MAPD:

$$H_3C \longrightarrow C \longrightarrow CH (g) \qquad f \qquad H_2C \longrightarrow CH_2 (g)$$

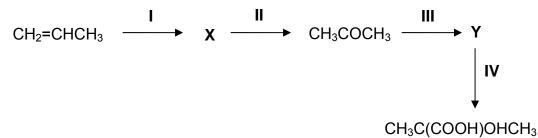
(i) Use the bond energies given in the *Data Booklet* to calculate the standard enthalpy change for the conversion of methylacetylene to propadiene.

 $\Delta H_{rxn} = [BE(C=C) + BE(C-C) + 4 \times BE(C-H)] - 2 \times BE(C=C) + 4 \times BE(C-H)$ = -30 kJmol⁻¹

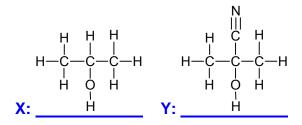
(ii) Sketch and label an energy profile diagram for the reaction showing all relevant energy changes.

(b) (i) State the hybridisation, shape and number of sigma and pi bonds about C_1 and C_2 of propadiene.

Reaction	Hybridisation	Shape	No. of sigma and pi bonds
C ₁	sp	Linear	σ bond – 2 π bond – 2
C ₂	sp²	Trigonal planar	σ bond – 3 π bond – 1


[4]

(ii) Suggest whether propandiene is a planar or non-planar molecule.


[4]

Non-planar

(c) Propene is a major commodity in the petrochemical industry. It is used as an intermediate in the production of various chemicals. Below is reaction scheme of propene.

(i) Draw the displayed formulae of X and Y.

(ii) State the reagents and conditions of reactions I - IV

[6]

Reaction	Reagents	Conditions
I	Steam, conc H ₃ PO ₄	300°C, 65 atm
II	dil H ₂ SO _{4(aq)} , KMnO ₄	Heat
	HCN, trace amount of NaOH	Cold
IV	Dilute HCI	Heat

(d) Predict with explanation whether CH₃CH₂OH or CH₃OCH₃ has a higher boiling point.

[3] CH_3CH_2OH and CH_3OCH_3 have simple molecular structures. CH_3CH_2OH has hydrogen bonding between CH_3CH_2OH molecules which requires more energy to overcome than the weak Van der Waals interaction between CH_3OCH_3 molecules. CH_3CH_2OH has a higher boiling point.

(e) Suggest a 2-steps chemical tests to distinguish between CH_3COOH and CH_3CH_2COOH .

[3]

Test

To 2cm^3 of each compound in separate test tubes, add LiAlH₄ in dry ether at rtp. Followed by the addition of NaOH_(aq) and I₂ and heat the mixture.

Observations

The test tube containing CH_3COOH will have form a yellow ppt. The test tube containing CH_3CH_2COOH will not form the yellow ppt.

[Total: 20]