HWA CHONG INSTITUTION 2014 JC2 H1 BIOLOGY PRELIMINARY EXAMINATION MARK SCHEME

PAPER 1

Qn No.	Correct Answer	Qn No.	Correct Answer	Qn No.	Correct Answer
1	В	11	A	21	D
2	В	12	С	22	А
3	В	13	D	23	С
4	А	14	D	24	А
5	с	15	А	25	D
6	D	16	D	26	В
7	В	17	А	27	D
8	В	18	В	28	А
9	D	19	A	29	С
10	Α	20	Α	30	с

PAPER 2

QUESTION 1

(a)

- (i) Name and state the function of organelles A and B
 - A: Mitochondria, site of cellular respiration to generate ATP
 - B: Nucleus, to store genetic material / DNA.
 - (ii) Explain why there is an abundance of organelle C in the plasma cell.
 - 1. There is an abundance of structure C which is studded with ribosomes.
 - 2. As ribosome is the site of polypeptide synthesis
 - 3. and the ER lumen is the site of protein folding
 - 4. Both are necessary to make large quantity of proteins
- (b) Explain how the structure of the cell membrane relates to its role in maintaining the internal environment of the plasma cell. [3]
 - 1. Structure D is composed of a phospholipid bilayer, with hydrophilic phosphate head and hydrophobic hydrocarbon tails
 - 2. The hydrophobic hydrocarbon tails creates a hydrophobic core
 - 3. The cell membrane is selectively permeable, allowing desirable substances to be kept within and undesirable substances kept out of the cell
 - 4. It defines the boundary of the cell, keeping the interior of the cell physically separated from the surrounding environment
 - 5. The membrane is fluid, which allows both phospholipids and proteins to move about laterally
 - 6. This allows cell membrane to form pseudopodia to engulf foreign particles
 - 7. Proteins are randomly distributed in the phospholipid bilayer
 - 8. Carrier and channel proteins help to regulate the transport of substrate into and out of the cells
 - 9. Cholesterol is commonly found wedged between phospholipids in cell membrane
 - 10. and regulates membrane fluidity

HWA CHONG INSTITUTION / 2014 JC2 H1 BIOLOGY / PRELIMINARY EXAMINATION / MARK SCHEME

[2]

[2]

(c) Describe how macrophages engulf and digest cellular debris.

- 1. Macrophage engulfs the cellular debris through endocytosis / phagocytosis
- 2. The plasma membrane of macrophage ,invaginates / extends outwards to enclose, the debris to form vesicles
- 3. The vesicles pinch off the cytoplasm

QUESTION 2

4. And may fuse with lysosome which contains hydrolytic enzymes to digest the cellular debris

[Total: 10 marks]

- (a) Describe how light is harvested at structures A and B.
 - 1. Accessory pigments embedded in the thylakoid membrane forms the antenna complex of photosystems
 - 2. Range of pigments allow for a range of wavelengths to be absorbed
 - 3. Photons or light energy is absorbed by these pigment molecules
 - 4. Electrons in the pigment molecules are excited / moves to higher energy level
 - 5. These energy is passed from one pigment to another via resonance energy transfer
 - 6. Resonance energy is captured by the excitation of an electron of special chlorophyll a in the reaction center
- (b) Explain the effect that the herbicide binding to this protein will have on photosynthesis.
 - 1. Triazine prevents non-cyclic photophosphorylation
 - 2. Resulting in no electrons available to form reduced NADP
 - 3. As ATP is produced by cyclic photophosphorylation, ATP is still produced
 - 4. Resulting in no / less , ATP and no reduced NADP available for Calvin cycle / light independent reaction / conversion of GP to TP
- (c) (i) Using Fig 2.2, describe and explain the effects an increase in oxygen concentration will have on photosynthesis
 - 1. An increase in oxygen concentration reduces the rate of photosynthesis / increases the rate of photorespiration
 - 2. This is less Rubisco is available for CO₂ / more oxygen competing with CO₂ for Rubisco; / more O₂ binding to Rubisco/ O₂ outcompetes CO₂ for Rubisco
 - 3. This results in less CO₂, fixation for Calvin cycle, / excess CO₂ given off
 - 4. There is less, glycerate 3-phosphate / GP / TP , produced and less RuBP being, regenerated / formed
- (c)(ii) Suggest why the process outlined in Fig 2.2 is known as photorespiration.
 - 1. The process uses oxygen and, excretes / produces , carbon dioxide
 - 2. Light energy / non-cyclic photophosphorylation / light dependent reaction / products of the light dependent reaction / ATP and NADPH, is required for this process to occur
 - 3. The same photosynthetic enzyme / Rubisco is used and allows the Calvin cycle to continue
- (d) Suggest why these plants do not show photorespiration.
 - 1. oxygen's 3D conformation is not complementary to PEP carboxylase, thus oxygen is not a substrate for / cannot bind to / will not compete for PEP carboxylase
 - 2. PEP carboxylase , is only specific to carbon dioxide

[Total: 10 marks]

[3]

[2]

[3]

[1]

2

[2]

QUESTION 3

(a)

(a)		Ou	tline what is meant by "descent with modification by natural selection".	[3]
		1. 2. 3.		
			Natural selection is the mechanism that brings about descent with modification Natural environment "selects" for certain traits to be propagated	
(b) (i)		Exp	plain why variation is important in selection.	[3]
		1. 2. 3. 4.	Inherited allelic variation exist in the individuals present in the populations Natural selection occurs where different habitats each exerts its own specific/ different selection pressu Thus different habitats select for favourable phenotypes resulting in differential survival and reproductive abilities of individuals in the population on the islar increase chances of survival till reproductive age Individuals that are selected for pass on alleles to their offspring	
(ii)			etch a graph on the axes below to show the distribution in size of seahorses as a result of disrupti ection.	ve
			two peaks dip in middle connected	
((iii)	Ex	plain how disruptive selection has been maintained in this species of seahorse.	[3]
		2. 3.	mates selected by size few intermediates mate habitat for intermediate size no longer available / difference in predation intermediates selected against / extremes selected for alleles for extreme phenotypes (more likely to be) passed on increase in allele frequencies for extreme phenotypes [Total: 10 mark]	cel
QUE	ST			(0]
				[2]
(u)	(')	1.	To preserve a population of undifferentiated cells By mitotic division / allowing long-term self-renewal	
	(ii)	Su	ggest how a cell differentiates to form a specialised cell.	[2]
		signals that switch on / off certain genes Thus, different proteins are produced in order to change the cell		
(b)		Su	ggest two ethical concerns on the use of embryonic stem cells.	[2]
		1. 2.	Blastocyst must be destroyed when the cells are removed Issue on egg donation	
(c) (i)	(i)	Ex	plain how uncontrolled cell division can result in cancer.	[3]
		2. 3.	Accumulation of mutations in cancer-critical genes Rate of cell division exceeds rate of cell death Normal cell cycle checkpoints become dysfunctional (a) Angiogenesis, the formation of blood vessel	

(b) Metastasis, the development of secondary malignant growths at a distance from a primary site of cancer

- (ii) State one other causative factor that can increase the chances of cancerous growth.
- [1]

[6]

[Total: 10 marks]

- 1. UV rays
- 2. Radiation
- 3. Genetic disposition
- 4. Age

QUESTION 5

(a) Describe the properties of plasmids that allow them to be used as DNA cloning vectors.

- 1. Plasmids exist as circular double-stranded DNA which can exist independently in bacteria
- 2. Plasmids contain an origin of replication which allows it to replicate independently
- 3. so that
- 4. Selectable markers are present in plasmids
- 5. Such markers confer some well-defined traits on the host organism that can be selected for
- 6. e.g.antibiotic resistance of the transformed bacteria / synthesis of the enzyme β -galactosidase by the transformed bacteria
- 7. Such traits differentiate / distinguish transformed cells from non-transformed / untransformed cells;
- (b) Explain how eukaryotic genes are cloned using *E. coli* cells to produce eukaryotic proteins to avoid the problems associated with introns. [8]
 - 1. Eukaryotic DNA contains introns, while prokaryotic cells do not have introns
 - 2. Hence, prokaryotic cells such as *E.coli*, does not have the RNA splicing machinery to remove the introns
 - 3. To circumvent the problems associated with introns, cDNA can be used as the gene of interest instead
 - 4. cDNA can be synthesized via reverse transcription by using the mRNA of the eukaryotic gene as a template
 - 5. Use restriction enzyme to cut restriction sites flanking the cDNA of the eukaryotic gene of interest to obtain restriction fragments of sticky ends
 - 6. Use the same restriction enzyme cut the plasmid at the multiple cloning site of the plasmid with sticky end
 - 7. The sticky ends generated in both the cDNA gene of interest and the plasmid allows for complementary base pairs to anneal via hydrogen bonding
 - 8. The cDNA should be placed under the control of the a strong promoter, such as lac promoter to induce production of the eukaryotic protein
 - 9. Restriction fragment ligates with the plasmid with the help of ligase via the phosphodiester bonds, forming a recombinant plasmid
 - 10. Recombinant plasmid is then transformed into the E.coli host cell via heat shock/electroporation;
 - 11. Selection of *E.coli* with recombinant plasmids carrying selectable markers, e.g ampicillin and isolate them;
 - 12. Culture the selected E.coli with the recombinant plasmids in liquid medium;
 - 13. Lactose is then added to induce transcription of the lac operon, to induce production of the eukaryotic protein in interest;
- (c) Outline how insulin can be produced by genetic engineering technique.

[6]

- 1. Synthesis of human insulin in bacteria, Escherichia coli
- 2. Based on known amino acid sequences of the A and B chains, trinucleotides representing all the codons are synthesised and joined together in the order dictated by the amino acid sequences
- 3. Two artificial genes are constructed, i.e. one carrying the artificial gene for the A chain and the other carrying the artificial gene for the B chain
- 4. Each artificial gene is placed under the control of \mathbb{O} the strong *lac* promoter; and \mathbb{Q} a part of the β -galactosidase structural genes
- 5. Both recombinant plasmids containing the two artificial genes are transformed separately into E. coli

- 6. E. coli cells are grown in the presence of lactose to switch on transcription from the lac promoter
- 7. The two artificial genes are expressed independently as fusion proteins, consisting of the first few amino acids of β-galactosidase, followed by the A or B polypeptide
- 8. a. Each gene was designed such that its insulin and β-galactosidase segments were separated by a methionine residue
 b. so that the insulin polypeptides could be cleaved from the β-galactosidase segments by treatment with
- cyanogen bromide9. The purified A and B chains were mixed, reduced and reoxidized to form the disulfide bonds present in native insulin

QUESTION 6

- (a) Describe the structure of an amino acid and the formation of a peptide bond.
 - 1. All amino acids have an $\alpha\text{-carbon}$ covalently bonded to
 - 2. A hydrogen atom
 - 3. A carboxyl group / (-COOH)
 - 4. an amine group / (-NH₂), and
 - 5. a variable R-group that is unique to each amino acid
 - 6. Each amino acid becomes joined to another amino acid via a condensation reaction
 - 7. with the elimination of a molecule of water
 - 8. The peptide bond -C-N-
 - 9. is formed between carboxyl group of one amino acid
 - 10. to the amine group of its neighbour
 - 11. Peptide bond formation takes place in the ribosome/ribosomal large subunit
 - 12. with the help of peptidyl transferase
- (b) Describe how the information on DNA is used to synthesise polypeptides in eukaryotes.
 - 1. General transcription factors are recruited at the promoter
 - 2. to mediate the binding of the RNA polymerase to the promoter
 - 3. forming the transcription initiation complex
 - 4. DNA double helix unwinds
 - 5. separating the 2 strands to form a transcription bubble
 - 6. One of the two unwound/exposed DNA strands acts as a template
 - 7. for complementary base pairing for the assembly of incoming ribonucleotides
 - 8. The template strand is read in the 3' to 5' direction
 - 9. to facilitate the synthesis of mRNA
 - 10. in the 5' to 3' direction
 - 11. In which the formation of phosphodiester bond is catalysed by RNA polymerase
 - 12. RNA polymerase transcribes a terminator sequence on the DNA
 - 13. which triggers the release of the RNA chain
 - 14. and dissociation of the RNA polymerase
 - 15. Addition of 5' methylguanosine cap to the pre-mRNA
 - 16. Addition of poly(A) tail to the pre-mRNA
 - 17. Introns are removed from the pre-mRNA by spliceosomes
 - 18. while exons are ligated together to form a mature mRNA
 - 19. 5' methylguanosine cap of the mRNA is recognised by the small ribosomal subunit
 - 20. which binds to the mRNA in search for the start codon AUG
 - 21. Start codon on the mRNA binds with initiator tRNA through complementary base pairing
 - 22. Followed by the binding of the large ribosomal subunit
 - 23. forming a translation initiation complex
 - 24. Initiator tRNA is situated in the P site of the ribosome
 - 25. while A site is ready for next aminoacyl-tRNA
 - 26. Codon of the mRNA allows for complementary base pairing with the anticodon of the aminoacyl-tRNA
 - 27. Peptide bond is formed
 - 28. between initial methionine at P site and second amino acid at A site
 - 29. catalyzed by peptidyl transferase

[6]

[8]

- 30. Growing peptidyl-tRNA in the A site is translocated to the P site
- 31. when ribosome shifts along the mRNA by one codon in the 5' to 3' direction
- 32. Termination occurs when ribosome reaches a stop codon
- 33. Release factor binds directly to the stop codon in the A site
- 34. with the addition of water molecule
- 35. Bond between polypeptide and tRNA at the P site is hydrolysed, resulting the formation of a polypeptide
- (c) Describe the causes of genetic variation in a population.

[6]

- 1. During prophase I of meiosis, crossing-over takes place between non-sister chromatids
- 2. resulting in recombination of segments of non-sister chromatids between homologous chromosomes
- 3. This leads to the formation of new combinations of alleles in gametes
- 4. At metaphase I, independent assortment of homologous chromosomes
- 5. The orientation of the bivalents with respect to the poles is random
- 6. Hence a 50% chance that a daughter cell gets a paternal chromosome or a maternal chromosome
- 7. Random fusion / fertilisation of gametes during sexual reproduction
- 8. carrying different combinations of chromosomes adds to genetic variation of the zygote formed
- 9. Mutations
- 10. occurs to generate new alleles