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Calculator Model:  



2 

 

1. ALGEBRA 

 

Quadratic Equation 

For the equation    

 

 

Binomial expansion 

 

 

 

where n is a positive integer and  

 

 

2. TRIGONOMETRY 

Identities 

 

sin 2 A + cos 2 A = 1 

sec 2 A = 1 + tan 2 A 

cosec 2 A = 1 + cot 2 A 

 

𝑐𝑜𝑠(𝐴 ± 𝐵) = 𝑐𝑜𝑠𝐴𝑐𝑜𝑠𝐵 ∓ 𝑠𝑖𝑛𝐴𝑠𝑖𝑛𝐵 

tan(𝐴 ± 𝐵) =
𝑡𝑎𝑛𝐴 ± tan 𝐵

1 ∓ 𝑡𝑎𝑛𝐴𝑡𝑎𝑛𝐵
 

 

 

 

Formulae for ABC 

 

 cos A 

Area of  =  sin A 

 

 

 

 

  

,02 =++ cbxax

a

acbb
x

2

42 −−
=

,......
21

)( 221 nrrnnnnn bba
r

n
ba

n
ba

n
aba ++








++








+








+=+ −−−

!

)1)...(1(

!)!(

!

r

rnnn

rrn

n

r

n +−−
=

−
=









( ) BABABA sincoscossinsin =

AAA cossin22sin =

AAAAA 2222 sin211cos2sincos2cos −=−=−=

A

A
A

2tan1

tan2
2tan

−
=

.
sinsinsin C

c

B

b

A

a
==

bccba 2222 −+=

bc
2

1



3 

 

1 Find the range of values of p for which the line 𝑦 = 𝑝𝑥 − 5 meets the curve  

𝑦 = 3𝑥2 + 4𝑥 − 2.                    [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Express   
5𝑥2−6𝑥+13

(𝑥−1)(𝑥2+3)
    in partial fractions.                 [5] 
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3 Prove that 2 cot 2𝜃 = cosec 𝜃 sec 𝜃 − 2 tan 𝜃. [5] 
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4 (a) Find 
𝑑

𝑑𝑥
(5𝑥𝑒2𝑥+1).                   [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Hence find ∫ 𝑥𝑒2𝑥+1  𝑑𝑥.    [4] 
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5 Solve the equation 1 + 3 sin2 𝜃 = 4 cos 𝜃 for −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 . [6] 
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6 The function f is given by   f(𝑥) =
𝑥2

𝑥−2𝑘
 , for 𝑥 > 2𝑘 , where k is a positive constant.  

 (a) Find f ′(𝑥). [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The function g, defined for 𝑥 > 2𝑘 , has the property that g′(𝑥) = (𝑥 − 2𝑘)2 f ′(𝑥).  

 g decreases for 𝑘 < 𝑥 < 6. 

 (b) Show that a possible value of k is 3. [4] 
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7 Prove that there are no values of k for which 𝑘𝑥2 + 2𝑥 − 2𝑘 − 3 is always positive. [6] 
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8 The line   𝑦 − 𝑥 = 2   intersects the curve   𝑦2 = 4(2𝑥 + 1)   at two points. 

 Find the coordinates of these two points. [5] 
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9 A curve has equation   𝑦 = 𝑥3 + 𝑚𝑥 − 15. It has a stationary point A where 𝑥 = 2. 

 (a) Show that the value of the constant m is −12. [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Find the coordinates of the other stationary point B. [2] 
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 It is given that P is a point on the curve where the gradient is a minimum. 

 (c) Find the coordinates of the point P. [3] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (d) Prove that the gradient is a minimum at P. [2] 
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10 The equation of a circle C is   𝑥2 + 𝑦2 − 4𝑥 − 6𝑦 − 12 = 0. 

 (a) Find the coordinates of the centre of C, and the radius of C. [4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Find the coordinates of the points at which the circle intersects the x-axis. [3] 
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 (c) State an equation of the circle which is a reflection of C in the y-axis. [2] 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 (d) Explain whether the circle in part (c) lies entirely in the 2nd quadrant.        [1] 
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11 An open cylinder has radius r cm and total surface area A cm2. 

 It is given that   
𝑑𝐴

𝑑𝑟
= 2𝜋(𝑟 + 𝑘). 

 

 (a) Find an expression for A in terms of r. [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) Express the height of the cylinder in terms of k. [1] 
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The radius of the cylinder is increasing with the height remaining constant. 

It is given that, at time t seconds,   
𝑑2𝑟

𝑑𝑡2 =
5

2𝑡+1
 . 

 

It is also known that initially, the radius was increasing at 3 cm/s. 

 (c) Find an expression for 
𝑑𝑟

𝑑𝑡
 . [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (d) Hence find the rate of increase of the total surface area of the cylinder after  

  4 seconds, given that the radius is 15 cm and 𝑘 = 10 at this instant. [3] 
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12 A piece of wire, 100 cm in length, is divided into two parts. 

 One part is bent to form a square of side x cm, and the other square of side y cm. 

 

 (a) Express y in terms of x. [2] 

 

 

 

 

 

 

 

 

 

 

 (b) Find the total area, A cm2, of the two squares, leaving your answer in the form 

  𝑝(𝑥 + 𝑞)2 + 𝑟, where p, q and r are consants. [4] 
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 (c) Hence state the minimum total area of the two squares, and the value of x at  

  which this occurs. [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (d) When 𝑥 = 𝑥1, the total area of the two squares is 𝐴1, where 0 < 𝑥1 < 12
1

2
 . 

  State another value of x, in terms of 𝑥1, which also gives a total area of 𝐴1. [1] 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

13 The perpendicular bisector of the line joining the points 𝐴(3, 2ℎ) and 𝐵(−7, −10) passes 

through the point 𝑋(ℎ, 3), where h is a constant. 

 

(a) Find the mid-point M of AB. [2] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Find the gradient of AB. [2] 
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(c) Hence find the possible values of h. [7]  
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