Visualizing Data



Study the library matplotlib using this
notebook

- fill up the line chart and scatter plot
section

https://colab.research.google.com/drive/1zudOVQrWxYv-

rMc9YlbShrHvUjlyipCm?usp=sharing



https://colab.research.google.com/drive/1zudOVQrWxYv-rMc9YlbShrHvUjlyipCm?usp=sharing

VISUALIZING RESULTS

= earlier saw examples of different orders of growth of
procedures

= used graphs to provide an intuitive sense of differences

= example of leveraging an existing library, rather than
writing procedures from scratch

= Python provides libraries for (among other topics):
> graphing
> numerical computation
> stochastic computation

= want to explore idea of using existing library procedures to
guide processing and exploration of data



USING PYLAB

= can import library into computing environment
import pylab as plt

> allows me to reference any library procedure as
plt.<procName>

" provides access to existing set of graphing/plotting
procedures

= here will just show some simple examples; lots of
additional information available in documentation
associated with pylab



SIMPLE EXAMPLE

= basic function plots two lists as x and y values
> other data structures more powerful, use lists to demonstrate

= first, let’s generate some example data
mySamples = []

myLinear = []
myQuadratic = []
myCubic = [] .
myExponential = [] -ﬁﬁq i#ﬂ
Y P : o él"-:’:'.! E&D{‘ 0 2
e AV e
X0 N o)
for i in range (0, 30): 37 N o
mySamples.append (1) Bééﬁﬁjﬁﬂgﬁﬁ@
myLinear.append (i) Jﬂﬁg@ﬁp
!
O

myQuadratic.append (1**2)
myCublc.append (i1**3)
myExpDnential.append(l.Er*i}




SIMPLE EXAMPLE

e e’
" to generate a plot, call " ARG

plt.plot (mySamples, myLinear)

= arguments are lists of values (for now)
> lists must be of the same length



EXAMPLE DISPLAY

30

25

20

15

14

3

o
ok
0 5 10 15 20 25 30

plt.plot (mySamples, myLlinear)



OVERLAPPING DISPLAYS

" suppose we want to display all of the graphs of the
different orders of growth

= we could just call:

plt.plot (mySamples, myLlnear)

plt.plot (mySamples, myQuadratic)

plt.plot (mySamples, myCubilc)
{

plt.plot (mySamples, myExponential)



EXAMPLE OVERLAY DISPLAY

140000
120000 | :
100000 | |
| A
W
80000 - e
e ©
60000 | D"ﬁ:ﬂ E\igﬂ "t.'\
1‘-{{\? o {Eﬁ?’
20 ac®
40000 | T axet
| o
20000 |
- B — ‘T--;"L_————-.._
— e -
% 5 0 15 20 5 ____31_;:'
plt.plot (mySamples, myLinear) plt.plot (mySamples, myCubic)
plt.plot (mySamples, myQuadratic) plt.plot (mySamples, myExponential)




OVERLAPPING DISPLAYS

= not very helpful, can’t really see anything but the
biggest of the plots because the scales are so different o
. O

\
. g:'ie" o
* can we graph each one separately? G@iiﬂﬁﬂa
n AP )
call AP
. "n.,.'*-!I E:.r:" ° E.E‘EE E"ﬂ
plt.figure q{:arg}} %ﬂaiﬁf‘

o creates a new display with that name if one does not
already exist

> If a display with that name exists, reopens it for
processing



EXAMPLE CODE

plt.figure("Iin")
plt.plot (mySamples,
plt.figure ('quad')
plt.plot (mySamples,
plt.figure('cube')
plt.plot (mySamples,
plt.figure('expo!')

plt

plot (mySamples,

myLlnear)

myQuadratic)

myCubic)

my.

“Xponential)



SEPARATE PLOTS

: v

piH

25 an

L4000

120006

100000

8OO0

GO0C

A0

20000

an

plt.figure('lin")
plt.plot (mySamples,

myLinear)

plt.figure('expo')
plt.plot (mySamples,

myExponential)




PROVIDING LABELS

" Should really label the axes
plt.figure('lin')

plt.xlabel ('sample polints')
plt.ylabel ('linear function')

PlC.ploLC (Mysamples, mMyLinear)

plt.figure('quad’)

plt.plot (mySamples, myQuadratic)
plt.figure('cube’)

plt.plot (mySamples, myCubic) AL
plt.figure('expo’) iﬁﬁﬁ
plt.plot (mySamples, myExponential) ﬂﬁﬁ ;

plt.figure('quad") ﬂﬁﬂ
plt.ylabel ('gquadratic function')




LABELED AXES

23

lin@ar functon
n

1

a ] 1a 15 20 25 k1
=M ple points

5 2 8 8 € B

quadratks funchan

g




ADDING TITLES

plt.figure('lin')
plt.plot (mySamples,
plt.figure('quad")
plt.plot (mySamples,
plt.figure('cube’)
plt.plot (mySamples,
plt.figure('expo’)
plt.plot (mySamples,

myLinear)

myQuadratic)

myCubic)

myExponential)

.figure('lin'")
.title("'Linear’')
.figure ('quad')
.title('Quadratic')
.figure('cube')
.title('Cubic')
.figure('expo’)

.Citle('Exponential’)




TITLED DISPLAYS

Lire=ar

an
25
20
,,E 15
E 10
5
n':l 5 10 15 20 25 . 'lllllI ki
Eample points Eﬂ"n
3*'2’5
20©
RO BN
e\
\a

LQuadratic

20

5

n



CLEANING UP WINDOWS

= we are reusing a previously created display window

" need to clear it before redrawing

" because we are calling plot in a new version of a
window, system starts with first choice of color (hence
the same); we can control (see later)



CLEANING WINDOWS

plt.figure('lin')
plt.clf() |
plt.plot (mySamples,

plt.figure('quad')
plt.clf ()
plt.plot (mySamples,

plt.figure('cube')

‘plt.clf{}“

plt.plot (mySamples,

plt.figure('expo')
plt.clf ()
plt.plot (mySamples,

myLinear)

myQuadratic)

myCubic)

myExponential)

.figure('lin')
.title('Linear’')
.figure('quad"')
.title('Quadratic')
.figure('cube')
.Citle("'Cubic')
.figure('expo')
.title("'Exponential')



CLEARED DISPLAYS

w0 Liriear 480 Quadrakic
B0
2%
palil
2 601
500
15
4010
10 300
201
5 e
-
140 -
-"--'-F




COMPARING RESULITS

" now suppose we would like to compare different plots

" in particular, the scales on the graphs are very
different

" one option is to explicitly set limits on the axis or axes

= a second option is to plot multiple functions on the
same display



CHANGING LIMITS ON AXES

.figure('lin'")
.clf ()

.ylim(O,lOOOH

=

.plot (mySamples, myLinear)
.figure('quad')
.clf ()

.y1lim (0, 1000)

.plot (mySamples, myQuadratic)
.figure('lin")
.title('Linear"')

.figure ('quad')
lt.title('Quadratic')

'0,0,'C, 0, )00, 0, 'OI'C|C O
t ottt ||




CHANGING LIMITS ON AXES

10{D

800

00

Lirear

14

15

25

i

10{D

Quadrabng

800

00

15

25

i



OVERLAYING PLOTS

L] {::'__

.figure('lin quad')

1T ()

P
P

lot (mySamples,

lot (mySamples,

myLinear)
myQuadratic)

£ ()

.figure('cube exp')
.cl

P
P

lot (mySamples,

lot (mySamples,

myCubic)
myExponential)

.figure('Iin quad")
.title('Linear wvs.
.figure('cube exp’)
title('Cubic vs.

Ouadratic')

Exponential')



OVERLAYING PLOTS

a00

a0

0

Lan

400

300

00

101

Linear vs. Quadratic

L (i)

Cubic v&. Exponerntial

/ 120000

10Cano

cubeExp.png

AT

QRO

FiREAE

10 15 20

25

k11 bl

k11



ADDING MORE
DOCUMENTATION

" can add a legend that identifies each plot w0
plt.figure('lin quad") ﬁéﬁﬁﬁ

(=)
plt.clf () \

plt.plot (mySamples, mylLinear,

plt.plot (mySamples, myQuadratic,

plt.legend(loc = "upper left')

D
E{;ﬁ\ll.
{\a“? a
e ‘E:{'I'"{}
plt.figure ('cube exp') \o©
plt.clf ()
plt.plot (mySamples, myCubic, |label = 'cubic})
plt.plot (mySamples, myExponential,[label = 'exponential'l) X
e
plt.legend/() .ﬂﬂﬁeb
plt.tltle (TCublc vs. Exponential') iﬂcﬁﬁﬂﬂ

\O



ADDING MORE
DOCUMENTATION

a00

o

H00

500

200

300

00

1010

Linear vs. Quadratic

linear
guadratic

14 15 2

a5

an

Cubic vs. Expanential

140000
—  culbsic
f— —  axponential
|
|
100000 f
|
|
AODOD |
|II
G000 |
40000 /
I
206000 _{__ "
__—~-:‘#""’£i
; =
L] 14 15 20 a5

k1H



CONTROLLING DISPLAY
PARAMETERS

" now suppose we want to control details of the
displays themselves

= examples:
> changing color or style of data sets

> changing width of lines or displays
° using subplots




CHANGING DATA DISPLAY

e
e
figure('lin quad') w%Q?ﬁgﬁE

st 2
.clf () cﬁg
plot (mySamples, myLinear, |'b-"} label = "linear')
plot (mySamples, myQuadratic,|'ro'} label = 'quadratic')
.legend(loc = "upper left') ﬂﬂﬁ e
.title('Linear vs. Quadratic’) fﬁﬁﬂﬁﬁﬁﬂ

aﬂﬁﬁkﬂﬁﬁﬁ

.figure('cube exp') gﬂiﬁﬁﬁﬁ
.clf () o
plot (mySamples, myCubic, |"g®'| label = 'cubic')
plot (mySamples, myExponential, |['r—--"|, label = 'exponential')
.legend ()

.title('Cubic vs. Exponential')



CHANGING DATA DISPLAY

a00

nan

0

500

404

300

S0

1010

Linear vs. Quadratic

—  linear
& @ guadratic

15

25

k1

Cubic ¥&. Exponential

L4anG
& & cuwhic
135000 - &:-:pnnenhal
wosj CUbeExpStyles.png .'
1
i
Ba0mO I
G000 y
400010 .'I
' [
2000 et
o b
0 TERER ‘_t! "' - L
0 5 1 15 2 25

k1



CHANGING DATA DISPLAY

.figure('lin quad')

.title('"Cubic vs. Exponential')

.c1f()
.plot (mySamples, myLinear, 'b-', label = '"linear’, |linewidth = 2.0}
.plot (mySamples, myQuadratic, 'r', label = 'quadratic',[linewidth = 3.Q
.legend(loc = "upper left') ﬁﬂﬁn .
.title('Linear vs. Quadratic') qﬁﬂf éﬂﬁﬂ

= e

¥ ﬁa‘?‘% et

: = s

.figure ('cube exp') ﬁa{ﬁ
.c1f ()
.plot (mySamples, myCublc, 'g--', label = 'cubic',|linewidth = 4.0}
.plot (mySamples, myExponential, 'r',label = 'exponential',|linewidth = 5.0
.legend ()




CHANGING DATA DISPLAY

00

nan

00

500

200

300

Fll

100

Lingar vs. Quadratic

— linear
=  gigdratic

14

15

25

n

Latano

120006

LRGN0

OO0

BONC |

A0CN

FIREATE

Cubic vs. Exponential

= cubic

e ponential




USING SUBPLOTS

plt.figure('lin guad')
plt.clf ()

Subplot (211)
L¥1im (0, S00)
plt.plot (mySamples, mylinear, 'b-', label = 'linear’, linewidth = 2.0)
Bubplot (212)
Ly¥1im (0, 900)

plt.plot (mySamples, myQuadratic, 'r', label = "guadratic’, linewidth = 3.0)
plt.legend(loc = "upper left') 5Eﬁe"a%+
plt.title('Linear vs. Quadratic') {ﬁgfﬁ'&{{fﬂ
?ﬁﬁpkxfﬁ‘g Tﬁﬂn ‘ﬂﬁﬁﬁﬁ
plt.figure ('cube =xp") {\\}fﬁ ﬂ&‘l‘l ﬂ"::E' _ {{{ﬁ G""'”
plt.clf() 2 X0 AR
- 'D\"-E” -« N 5'3- 5‘-.}

Subpiot (L2 L a0 0

T \o® e?
plt.plot (mySamples, myCubic, 'g--', label = '"cubicf, linewidth = 4.0}
plt.subplot (1L22)
plt.ylim (0, 140000
plT.plot(myvoamples, myExponential, 'r',label = '"exponential’, linewidth = 5.0)

plt.legend()
plt.title('Cubic vs. Exponentiall')



USING SUBPLOTS

— LAB000 L0000 Cubic vs. Exponential

&0 — guponential
Tan
00 120000 1poang
%00
£00
300 LoCenno o0
S0
100

[ - —— T
i 5 1a i5 20 a5 [+

ana . Linear ws. Quadratic .

B0 H = guadratic
100

600
500
400
200 FAHE L] e POGH0

i *
plali] ._F-ll

d 5 14 15 2 25 k1 4 5 W 15 M 253 a9 5 W 15 M 25 A6

80000 | LO0O0

BONG R0

Q0O HLOO0




CHANGING SCALES

plt.figure ('cube exp log')
plt.clf()
plt.plot (mySamples, myCubic, 'g--', label = 'cubic’, linewidth = 2.0)
plt.plot (mySamples, myExponential, 'r',label = 'exponential', linewidth = 4.0)
plt.yscale('log')
plt.legend|) dﬁﬁﬁ
plt.title('Cubic vs. Exponential') iaﬂa
e A%

- e o - . CA
plt.figure('cube exp linear') (o e ©
plt.clf() of®
plt.plot (mySamples, myCubic, 'g--', label = 'cubic’, linewidth = 2.0)
plt.plot (mySamples, myExponential, 'r',label = 'exponential', linewidth = 4.0)
plt.legend()

.title('Cubic vs. Exponential')



CHANGING SCALES

140000

120000

10CE000

BO0oo

AL

ARG

FiREAlE

Cubic vs. Exponential

== cuhic

— Ay ponential

10*

104}

10¢ |

101

10°

Cubic vs. Exponential

== cubsic

— axponential




AN EXAMPLE

= want to explore how ability to visualize results can
help guide computation

= simple example
> planning for retirement
> intend to save an amount m each month

o eXpect to earn a percentage r of income on
iInvestments each month

> want to explore how big a retirement fund will be
compounded by time ready to retire



AN EXAMPLE: compouna
Interest

def retire (monthly, rate, terms):

savings = [0]
base = [(0]
mRate = rate/12

for 1 1n range (terms) :

base += [1]

savings += [savings|[-1]*(1 + mRate) + monthly]
return base, savings



DISPLAYING RESULTS vs.
MONTH

def displayRetireWMonthlies (monthlies, rate, terms):

plt.figure('retireMonth') ﬁﬁﬁﬂ
plt.clt () {Fﬂiﬁﬁ
for monthly in monthlies: "
xvals, yvals = retire(monthly, rate, terms)
plt.plot(xvals, yvals,
label = 'rﬁfirﬂ:'+atr{monthlyJ
plt.legend(loc = "upper left') ?adﬁﬁiﬁp
Wy 0%
\a0®

displayRetireWMonthlies ([500, 600, 700, 800, 900,
1000, 1100], .05, 40* 12)



DISPLAYING RESULTS vs.
MONTH

1800000
—  retire:S00
1600000 retire:600
retire: 700
1400000 retire:800 f
500000 retire:900
retire:1000 A
. F
1000000l | — retire:1100 ) r, .
BO0000
GO0000
400000
200000
0




ANALYSIS vs. CONTRIBUTION

= can see impact of increasing monthly contribution

> ranges from about 750K to 1.67M, as monthly savings
ranges from $500 to $1100

= what is effect of rate of growth of investments?



DISPLAYING RESULITS vs. RATE

def displayRetireWRates (month, rates, terms):

plt.
plt.
for

displayRetireWRates (800, [.03, .05, .07], 40*12) ﬁﬂé

"

figure('retireRate')

clf ()
rate 1n rates:
Xxvals, yvals = retlire (month, rate, terms)
plt.plot(xvals, yvals,
label = 'retire:'+str(month)+ ":" + \
str(int (rate*100)))
plt.legend(loc = "upper left') ) e
‘??{&Gw: ﬁ‘i; Eﬁﬂﬁ



DISPLAYING RESULTS vs. RATE

2500000
—  metire:800:3
retire:B00:5
2000000 retire:800:7 /
1500000
y
_..__.-"
1000000 - e .
;'a B f,/
-.-__.-' -.-___.-"
.-..-.-..__.-' .’!._,-'-"' _F'_'_’_,-'-'"-"-'-’-
500000 | T !
Pt
D -._'_(______‘-l—-ﬂ&f




ANALYSIS vs. RATE

= can also see impact of increasing expected rate of
return on investments

> ranges from about 600K to 2.1M, as rate goes from 3% to
1%

= what if we look at both effects together?



DISPLAYING RESULTS vs. BOTH

def displayRetireWMonthsAndRates (monthlies, rates, terms):
plt.figure('retireBoth")

plt.clf () O
Semled— _ o an
plt.xlim(30*12, 40*12) Eﬂﬂﬁ cﬁ%}
m 3: iﬁ%e.‘:-'
for rate 1n rates: °
xvals, yvals = retire (monthly, rate, terms)
plt.plot(xvals, yvals,
label = 'retire:'+str (monthly)+ ":' \
+ str(int(rate*100)))
plt.legend({IOC = "uUpper IeItC') o
A w
?\} '{{{{Eﬁ. Eﬂﬁ{‘h
displayRetireWMonthsAndRates ([500, 700, 900, 1100], Wﬁjk&‘
[.03, .05, .071, \o®

40*12)



DISPLAYING RESULIS vs. BOTH

3000000

—  retire:300:3 -
——  retire:500:5 -~
2500000 | —  retire:500:7 -
retire:700:3 - -
— retire:700:5 o _~
Joooace retire:700:7 _— -
—  retire:900:3 |~ —
15000000 — retire:900:5 — e
4 —  rmetire:900:7 -
—  retire:1100-3
1000000 retire:1100-5
—  retire:1100:7

%o 380 400 120 240 460 180



DISPLAYING RESULIS vs. BOTH

" hard to distinguish because of overlap of many graphs

= could just analyze separately

® but can also try to visually separate effects



DISPLAYING RESULTS vs. BOTH

def displayRetireWMonthsAndRates (monthlies, rates, terms):

plt.figure('retireBoth’") &

plt.clf() & » "

plt.x1im(30%12, 40%12) PN oo\

monthLabels = ['r"', ’b* ';;', k1l & oS qﬂﬁ_ e

ratelabels = ['-", 'o', "—"] \a° -L\._L_ﬁe ﬂ-\ﬁ"‘c' E‘aﬁ"

TOr 1 1n ranqe[len[mﬁnthl EE R *) fﬁﬁ k&ﬁc
monthly = monthlies[i] ©° \,‘-ﬁ‘DE’
monthlLabel = monthlLabels[i%len(monthlLabels) ] ﬂﬁﬂ_ﬂa
Ior J 1n rangel(len{rates)): gﬁﬁh tﬁ?

C .
rate = rates[]] ﬁ:ﬂﬁ {'@:‘G
ratelabel = rateLabels[j%len[ratELabels}] Kﬁﬁﬁn
XVals, yvals — retire (monthly, rate, Lerms) igwa
plt.plot(xvals, yvals, ijgﬁ

monthlLabel+ratelabel,
Tabel = "Icrite. Tscrlmonthly)+ "'\

+ str(int(rate*100)))
plt.legend(loc = "upper left')

displayRetireWMonthsAndRates ([500, 700, %00, 11001, [.03, .05, .071,
A40*%12)



DISPLAYING RESULIS vs. BOTH

000000 . '
' retire:500:3 | -
* » retire:500:5 L
2500000 | retire:500:7 e
— retire:700:3 e
e ¢ retire:700:5 e P '
2000000 | =" "

- = retire:700:7 . e
—  retire:900:3 | -

1500000 || ® ® retire:900:5
Ll == retire:900:7
— retire:1100:3
retire:1100:5

gﬁﬂ 380 400 420 440 460 480



DISPLAYING RESULTS vs. BOTH

" now easier to see grouping of plots
> color encodes monthly contribute

o format (solid, circle, dashed) encodes growth rate of
investments

" interaction with plotting routines and computations
allows us to explore data

> change display range to zero in on particular areas of
interest

> change sets of values and visualize effect — then guides
new choice of values to explore

> change display parameters to highlight clustering of plots
by parameter



Quiz 6—15 mins

e Start 1500
e you can refer to Readings
* raise your hand if you want to submit early

* you are to wait patiently for everyone to submit their Quiz or when
time runs out

* you can type out the code in Lesson Slides 7 to follow with the lesson



Stochastic Thinking and Random
Walks



The World is Hard to Understand

"Uncertainty is uncomfortable

"But certainty is usually unjustified



Newtonian Mechanics

"Every effect has a cause

"The world can be understood causally



Copenhagen Doctrine

*Copenhagen Doctrine (Bohr and Heisenberg) of causal
nondeterminism

> At its most fundamental level, the behavior of the
physical world cannot be predicted.

> Fine to make statements of the form “x is highly likely to
> occur,” but not of the form “x is certain to occur.”

"Einstein and Schrodinger objected

> “God does not play dice.” -- Albert Einstein



Does It Really Matter

Did the flips yield
2 heads
2 tails
1 head and 1 tail?



The Moral

*The world may or may not be
inherently unpredictable

"But our lack of knowledge does
not allow us to make accurate
predictions

*Therefore we might as well treat
the world as inherently
unpredictable

"Predictive nondeterminism



Stochastic Processes

"An ongoing process where the next state might depend on
both the previous states and some random element

def rollDi1e():
" praturns an int between 1 and 6""

def rollD1e():
"""returns a randomly chosen 1int

between 1 and 6"""



Implementing a Random Process

import random

def rol1D1e():
"""returns a random int between 1 and 6

return random.choice([1,2,3.,4,5,6])

rrrrnn

def testRoll(n = 10):
result = "'
for 1 1n range(n):
result = result + str(rol1Die())
print(result)



Probability of Various Results

=Consider testRol1(5)
"How probable is the output 111117



Probability Is About Counting

"Count the number of possible events

"Count the number of events that have the property of
interest

*Divide one by the other

"Probability of 111117
11111, 11112, 11113, ..., 11121, 11122, ..., 66666

> 1/(6**5)
= ™~0.0001286



Three Basic Facts About Probability

"Probabilities are always in therangeOto 1. Qif
impossible, and 1 if guaranteed.

"|f the probability of an event occurring is p, the
probabhility of it not occurring must be

"When events are independent of each other, the
probabhility of all of the events occurring is equal to a
product of the probabilities of each of the events
occurring.




Independence

"Two events are independent if the outcome of one
event has no influence on the outcome of the other

"Independence should not be taken for granted

Winning and losing probability of two teams out of many teams.



A Simulation of Die Rolling

def runSim(goal, numTrials, txt):
total = 0
for 1 in range(numTrials):
result = "'
for 3 1n range(len(goal)):
result += str(rol1Die())
1f result == goal:
total += 1
print('Actual probability of', txt, '=',
round(1l/(6**1en(goal)), 8))
estProbability = round(total/numTrials, 8)
print('Estimated Probability of', txt, '=',
round(estProbability, 8))

runSim('11111', 1000, '11111")



Output of Simulation

"Actual probability = 0.0001286
"Estimated Probability =0.0
"Actual probability = 0.0001286
*Estimated Probability = 0.0

"How did | know that this is what would get printed?

*"Why did simulation give me the wrong answer?

Let’s try 1,000,000 trials




Morals

"Moral 1: It takes a lot of trials to get a good estimate
of the frequency of occurrence of a rare event. We'll
talk lots more in later lectures about how to know
when we have enough trials.

"Moral 2: One should not confuse the sample
probability with the actual probability

*"Moral 3: There was really no need to do this by
simulation, since there is a perfectly good closed form
answer. We will see many examples where this is not
true.

®But simulations are often useful.



The Birthday Problem

"What’s the probability of at least two people in a
group having the same birthday

*|f there are 367 people in the group?
"What about smaller numbers?

"If we assume that each birthdate is equally likely
366!

T 366N 4(366—N)!

"Without this assumption, VERY complicated



Try to write a program that
simulates and get an
approximation



Approximating Using a Simulation

def sameDate(numPeople, numSame):
possibleDates = range(366)
birthdays = [0]*%366
for p 1n range(numPeople):
birthDate = random.choice(possibleDates)
birthdays[birthDate] += 1
return max(birthdays) >= numSame




Approximating Using a Simulation

def birthdayProb(numPeople, numSame, numTrials):

for

numHits = 0
for t in range(numTrials):
1T sameDate(numPeople, numSame):
numHits += 1
return numHits,/numTrials

numPeople in [10, 20, 40, 100]:
print('For', numPeople,
'est. prob. of a shared birthday is’,
birthdayProb(numPeople, 2, 10000))
numerator = math.factori1al (366)
denom = (366**numPeople)*math.factorial (366-numPeople)
print( Actual prob. for N = 100 =",
1 - numerator/denom)

Suppose we want the probability of 3 people sharing



Why 3 Is Much Harder Mathematically

"For 2 the complementary problem is “all birthdays
distinct”

"For 3 people, the complementary problem is a
complicated disjunct

> All birthdays distinct or
> One pair and rest distinct or
> Two pairs and rest distinct or

"But changing the simulation is dead easy



But all birthdays are not equally
ikely.



Another Win for Simulation

"Adjusting analytic model a pain

"Adjusting simulation model easy

def sameDate(nhumPeople, numSame) :
possibleDates = 4*Tist(range(0, 57)) + [58]\
+ 4*T71st(range(59, 366))\
+ 4*T71st(range(180, 270))
birthdays = [0]*366
for p 1n range(numPeople):
birthDate = random.choice(possibleDates)
birthdays[birthDate] += 1
return max(birthdays) >= numSame



Simulation Models

"A description of computations that provide useful
information about the possible behaviors of the system
being modeled

"Descriptive, not prescriptive

"0On
.”Al

y an approximation to reality

models are wrong, but some are useful.” — George Box



Simulations Are Used a Lot

*To model systems that are mathematically intractable
*"To extract useful intermediate results

"Lend themselves to development by successive
refinement and “what if” questions

=Start by simulating random walks



