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commands. 
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1 The graph of the first derivative of a function f is shown in the diagram below.  It is 
symmetrical about the origin O and approaches the lines 0.5y  and 0.5y    for large 

values of x. Sketch the graph of f( )y x  given that it has a pair of asymptotes that intersect 
at the origin.                        [3] 

 
 
 
 
 
 
 
 
 
 
 
 
 

2 The terms in the sequence 0 1 2, , ,u u u   satisfy the recurrence relation 

2 1 1( ),n n n nu u r u u      

where r is a non-zero constant.  

(i) Find the general solution of this recurrence relation.  [2] 

(ii) Given that 0 0u   and the sequence converges to a finite value L, find an expression 

for nu  in terms of L, n and r. State a necessary condition on r. [3] 

 
 

3 A curve is defined parametrically by 
2
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 where   is a positive constant. 

(i) Sketch the curve, stating the equation of its asymptote.        [2] 

(ii) Find in terms of ,  the x-coordinate of the point P where the curve intersects itself.       
      [1] 

(iii) Show that the area of the region bounded by the curve between P and the origin is given 
by an integral of the form 

2
f( )

0
4 g( ) d ,t t



  

where f ( )  is a function of   and 2g( )t  is a function of 2t  to be determined.           [5] 

   
 

4 It is given that the equation  1 cos 2 0x x    has a root  in the interval [0, 1]. 

Use linear interpolation once on the interval [0, 1] to obtain an approximation x1 to .      [2] 

 Using x1 as an initial estimate, apply the Newton-Raphson method to find ,  correct to 2 
decimal places.                           [4] 

         With the help of an appropriate graph, explain how Newton-Raphson method using another 

initial estimate *
1x  in the interval [0, 1] fails to give an approximation to .        [2]   
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5 (a)  For a positive constant a, there is an angle   such that sin a   and .
2

     

 Evaluate 
0

2 21

1
d ,

1
x

a x  leaving your answer in terms of a,   and .                  [2] 

 

(b) Using the substitution tan ,
2

x
t   show that 

2

cos 1
d  d .

1 cos sin 1

x t
x t

x x t




     

Hence determine
cos

d .
1 cos sin

x
x

x x          [6] 

 

 

6 The curve G has equation 
2 2
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 
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
 where k  is a non-zero constant and 1.k     

(i) State, in terms of k, the equations of the asymptotes of G.                      [2] 

(ii) Determine the set of values of k for which G has two stationary points.        [3] 

(iii) Give a sketch of G for 1,k  stating in terms of k, the coordinates of the point of 

intersection of its asymptotes.           [1] 

(iv) With the help of your sketch in part (iii), determine, in exact form, the value of m 
( 0)m   such that the line ( )y m x k   is a line of symmetry of G.      [3] 

 

 

7 (a)    Show that i ie e 2isin ,n n n     where n is a positive integer.   [1] 
 

         (b)    Show that 5sin   can be expressed in the form 

sin sin3 sin5a b c    , 

   where a, b and c are constants to be determined.  

  Use this result to deduce a similar expression for 5cos  . [6] 
 

(c) By considering i

1

e
N

nx

n
 , show that 

        
1 1

sin sin 2 sin3 sin cosec sin sin .
2 2 2

N N
x x x Nx x x x

                 
     

             [4] 
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8 The diagram (not drawn to scale) shows the cross-section of a skateboard ramp. The ramp is 
5 metres long and its height at equal intervals of 1 metre are as shown. 

 

 

 

 

 

 

 

 

(i) Using all the information in the sketch and trapezium rule, find an estimate for the 
cross-sectional area of the ramp.       [3] 

 
(ii) The ramp is to be made of concrete and a builder makes the amount of concrete based 

on the estimate found in part (i) multiplied by the width of the ramp. State, with a reason, 
whether he makes enough concrete to construct the ramp.     [1] 

 
(iii) Repeat part (i) using Simpson’s rule instead.        [3] 

 

The function ( )y x where  

2, 0 1
( )

p( ), 1 5

x
y x

x x

 
   

 

is used to model another ramp and its graph is shown in the diagram below. 

 

 

 

 

 

 

 

 

 
(iv) Given that the x-axis is tangential to the curve BC at C, write down the quadratic 

function p( ).x  [1] 

A ramp is obtained by rotating the region bounded by the line AB, curve BC and the axes 
completely about the y-axis. 

(v) Using p( )x found in part (iv), determine to the nearest integer, the least amount of 
cement that the builder needs to make to construct the ramp.         [3] 
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9 It is given that 
0

cos (2 ) d ,n
nI


    where n is a positive integer. 

(i) Without using the calculator, evaluate 2.I      [2] 

(ii) For 3,n   show that 2
1

.n n
n

I I
n 


      [5] 

(iii) Deduce that for all odd values of n, nI  is independent of n.      [1] 

(iv) For even values of n, show that 
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    [3] 

 
10 In a membership drive, a fitness club is trying to recruit new members. The sales manager 

models the number of members that the club has at the end of each month assuming that a 
certain portion p (0 1)p  of its members in the previous month will be lost to competitors, 

and that it will recruit a constant number, k, of new members in each month. 

Let  ( 1)nM n  be the number of members that the club has n months after the start of the 

membership drive.  

(i) Write down an expression for 1nM   in terms of .nM        [1] 

(ii) Given that the club has 500 members at end of the first month, determine nM  in terms 

of ,n p  and k.        [5] 

The sales manager sets a target for the club membership to reach 750 at the end of 6 months. 

(iii) Given that 80,k   show that to meet its target, the club needs to retain approximately 

95% of its members, month-by-month.           [3] 

(iv) Given that the club can only retain 90% of its members, month-by-month, find the least 
number of members it must recruit each month to meet or exceed its target. [3] 

 
 

11 (a)    On the same Argand diagram, sketch the loci of points given by each of the following          
         equations. 

(i) 3 3i 3 2,z     

(ii)   5
arg 3 2 3 3i .

6
z


      

 Find, in the form i ,x y  the exact complex number represented by the point of 

intersection of the loci in parts (i) and (ii). [6] 

 (b) Shade on another Argand diagram, the set S, of complex numbers w for which 

                                               
3 3

arg 0   and   3 5.
4 2i

w
w

       
 

   [5] 

Hence find the greatest and least possible exact values of 3i ,w  where .w S    [3] 


