

## River Valley High School Integrated Programme 2023 JC2 H2 Mathematics (9758) Lecture Test 2 (Term 1)

| Name     | : |         | Index Number      | : |    |
|----------|---|---------|-------------------|---|----|
| Class    | : |         | Date              | : |    |
| Duration | : | 50 mins | Max. No. of Marks | : | 30 |

List of Formulae

Vectors

The point dividing *AB* in the ratio  $\lambda : \mu$  has position vector  $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$ 

Vector product:

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

[Answer all the questions on writing papers. Up to 1 mark will be deducted for poor presentation.]

**1.** The lines  $l_1$  and  $l_2$  have equations:

$$\begin{split} l_1 &: x = \frac{y+2}{2} = z - 1 \\ l_2 &: \mathbf{r} = \begin{pmatrix} 5 \\ -5 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \quad \beta \in \mathbb{R} \end{split}$$

| (i)   | Verify that the point $A(1, 0, 2)$ lies on $l_1$ .                          | [1] |
|-------|-----------------------------------------------------------------------------|-----|
| (ii)  | Find the position vector of the foot of the perpendicular from A to $l_2$ . |     |
|       | Hence find the coordinates of the point of reflection of A about $l_2$ .    | [5] |
| (iii) | Find the angle between $l_1$ and $l_2$ .                                    | [2] |

- (iv) Determine whether  $l_1$  and  $l_2$  are intersecting, parallel or skew lines. [3]
- 2. A baby's toy teaches babies music by having them place lettered balls into boxes. The toy comprises five boxes arranged in a row. Seven balls each with a different letter from {A, B, C, D, E, F, G} written on it, are placed into the boxes. Each box must have exactly one ball in it. There will be two balls not used.

When the "play" button is pushed, the toy will play the notes corresponding to the letters shown on the balls in order.

A baby randomly puts five of the balls into the row of boxes.

Find the probability that

- (i) the notes C, E and G are played consecutively, in that order, [3]
- (ii) the notes C and G are both played but separated by other notes, [2]
- (iii) the notes D, F and A are played given that the five notes are played in alphabetical order. [4]

- 3. The points A, B, C, and D are such that ABCD is a parallelogram. It is given that  $\overrightarrow{AB} = \mathbf{a}$ and  $\overrightarrow{AD} = \mathbf{b}$ . The point P cuts BC such that BP:BC is  $\lambda : 1$  for some  $0 < \lambda < 1$ . The point Q lies on AP produced such that AP:AQ is also  $\lambda : 1$ .
  - (i) Show that  $\overrightarrow{AQ} = \frac{1}{\lambda} \mathbf{a} + \mathbf{b}$ . Hence show that *D*, *C* and *Q* are collinear. [3]
  - (ii) It is given that the area of the parallelogram *ABCD* is equal to the area of the triangle *ADQ*. Find the value of  $\lambda$ . [4]
  - (iii) Given further that  $|\mathbf{a}| = |\mathbf{b}|$ , show that  $\overrightarrow{AQ}$  is not perpendicular to  $\overrightarrow{DQ}$ . [3]

## ~ The End ~



|       | $\overrightarrow{OF} - \overrightarrow{OA} + \overrightarrow{AF}$                                                                                     |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | OI = OA + AI                                                                                                                                          |  |
|       |                                                                                                                                                       |  |
|       | = 0 + 5                                                                                                                                               |  |
|       | (2) $(1)$                                                                                                                                             |  |
|       | $\left(\begin{array}{c}2\end{array}\right)$                                                                                                           |  |
|       | = -5                                                                                                                                                  |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       | Let A' be the point of reflection of A in $l_2$                                                                                                       |  |
|       | F is the midpoint of $AA'$                                                                                                                            |  |
|       | $\overrightarrow{OF} = \frac{1}{OA} \left( \overrightarrow{OA} + \overrightarrow{OA'} \right)$                                                        |  |
|       | $O_1 = \frac{1}{2}(O_1 + O_1)$                                                                                                                        |  |
|       | $\overrightarrow{OA'} = 2\overrightarrow{OF} - \overrightarrow{OA}$                                                                                   |  |
|       | $\overrightarrow{OA'} = 2\overrightarrow{OF} - \overrightarrow{OA}$                                                                                   |  |
|       | $\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$                                                     |  |
|       | $\overrightarrow{OA'} = 2 \begin{vmatrix} -5 \\ -5 \end{vmatrix} = \begin{vmatrix} 0 \\ -10 \end{vmatrix} = \begin{vmatrix} -10 \\ -10 \end{vmatrix}$ |  |
|       |                                                                                                                                                       |  |
|       | A'(3 - 10 A)                                                                                                                                          |  |
| (iii) | $\frac{Converting l_i}{Converting l_i}$                                                                                                               |  |
| (111) | $\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$                                                                                   |  |
|       | $l \cdot \mathbf{r} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} + \alpha \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ $\alpha \in \mathbb{P}$                     |  |
|       | $l_1 \cdot \mathbf{I} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} + \begin{bmatrix} \alpha \\ 2 \end{bmatrix},  \alpha \in \mathbb{N}$                    |  |
|       | $\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 1 \end{pmatrix}$                                                                                   |  |
|       | Let $\theta$ be the angle between the lines. Then                                                                                                     |  |
|       | Let 0 be the angle between the mes. Then $ (1)(-1) $                                                                                                  |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       | $\cos\theta = \frac{\left  \begin{pmatrix} 1 \end{pmatrix} \left( 1 \end{pmatrix} \right }{\left  1 \right } = 0$                                     |  |
|       | $\left(1\right)\left(-1\right)$                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       | Therefore, the angle between the lines is 90°.                                                                                                        |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
|       |                                                                                                                                                       |  |
| (iv)  | Since the direction vectors of the lines are not parallel, the                                                                                        |  |
| (17)  | lines are either intersecting or skew lines.                                                                                                          |  |
|       |                                                                                                                                                       |  |
|       | Solving,                                                                                                                                              |  |

$$\mathbf{r} = \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} + \alpha \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 5 \\ -5 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
(1):  $\alpha + \beta = 5$   
(2):  $2\alpha + 0\beta = -3$   
(3):  $\alpha - \beta = -1$   
Solving simultaneous, (1) and (3) gives a solution  $\alpha = 2, \beta = 3$  whereas, (2) gives a solution  $\alpha = -1.5$ .  
Therefore, the system is inconsistent, and the lines are thus not intersecting.  
Therefore, they are skew lines.

| 2    | Probability and Permutations & Combinations [9 marks]                                                    |  |
|------|----------------------------------------------------------------------------------------------------------|--|
| (i)  | Number of ways to fill 5 boxes with 7 balls                                                              |  |
|      | $=\binom{7}{5}5!$                                                                                        |  |
|      | P(CEG played in order) = $\frac{\binom{4}{2}3!}{(7)}$                                                    |  |
|      | $\binom{7}{5}5!$                                                                                         |  |
|      | $=\frac{(6)(6)}{(21)(120)}=\frac{1}{70}$                                                                 |  |
|      | Alternatively                                                                                            |  |
|      | P(CEG played in order) = $\left(\frac{1}{7}\right)\left(\frac{1}{6}\right)\left(\frac{1}{5}\right)(3)$   |  |
|      | $=\frac{1}{70}$                                                                                          |  |
| (ii) | $(5)_{2}(4)_{2}$                                                                                         |  |
|      | $P(CC played but concreted) = \begin{pmatrix} 3 \end{pmatrix}^{3!} \begin{pmatrix} 2 \end{pmatrix}^{2!}$ |  |
|      | $P(CO played but separated) = \frac{7}{5!}$                                                              |  |
|      | $(5)^{5}$                                                                                                |  |
|      | (10)(6)(6)(2) - 2                                                                                        |  |
|      | (21)(120) 7                                                                                              |  |
|      | Alternatively                                                                                            |  |
|      | P(CG played but separated)                                                                               |  |
|      | [Number of ways with C and G in selection]                                                               |  |
|      | –Number of ways with CG together                                                                         |  |
|      | $= - \frac{\binom{7}{5}5!}{\binom{7}{5}5!}$                                                              |  |
|      | $\binom{5}{3}(5!) - \binom{5}{3}(4!)(2!)$                                                                |  |
|      | $=\frac{7}{\binom{7}{5}5!}$                                                                              |  |
|      | $=\frac{2}{2}$                                                                                           |  |
|      | 7                                                                                                        |  |
|      | Alternatively                                                                                            |  |
|      | P(CG played but separated) = $\left(\frac{2}{7}\right)\left(\frac{1}{6}\right)(3)(2!)$                   |  |
|      | $=\frac{2}{7}$                                                                                           |  |



| 3    | Abstract Vectors (10 marks)                                                                                         |  |
|------|---------------------------------------------------------------------------------------------------------------------|--|
| (i)  |                                                                                                                     |  |
|      | A AQ                                                                                                                |  |
|      | 1-1                                                                                                                 |  |
|      | 2 7 1-7                                                                                                             |  |
|      | B P C                                                                                                               |  |
|      |                                                                                                                     |  |
|      | $\gamma$                                                                                                            |  |
|      | A  D                                                                                                                |  |
|      | ~                                                                                                                   |  |
|      | $\overrightarrow{AP} = \lambda \overrightarrow{AC} + (1 - \lambda) \overrightarrow{AB}$                             |  |
|      | $= \lambda \left( \mathbf{a} + \mathbf{b} \right) + (1 - \lambda) \mathbf{a}$                                       |  |
|      | $= \mathbf{a} + \lambda \mathbf{b}$                                                                                 |  |
|      | 2 + (1 - 2)                                                                                                         |  |
|      | $\overline{AQ} = \frac{\lambda + (1 - \lambda)}{\lambda} \overline{AP}$                                             |  |
|      | $1 \rightarrow 1$ ( $1 \rightarrow 1$ )                                                                             |  |
|      | $= \frac{1}{\lambda} AP = \frac{1}{\lambda} (\mathbf{a} + \lambda \mathbf{b})$                                      |  |
|      | $=\frac{1}{\mathbf{a}}\mathbf{a}+\mathbf{b}$ (Shown)                                                                |  |
|      | $\lambda^{-1}$                                                                                                      |  |
|      | $\overrightarrow{DC} = \mathbf{a}$                                                                                  |  |
|      | $\frac{DC}{DQ} = \frac{DA}{DA} + \frac{AQ}{AQ}$                                                                     |  |
|      |                                                                                                                     |  |
|      | $= -\mathbf{D} + \frac{1}{\lambda}\mathbf{a} + \mathbf{D}$                                                          |  |
|      | $-\frac{1}{2}\mathbf{a}$                                                                                            |  |
|      | $-\lambda^{a}$                                                                                                      |  |
|      | $=\frac{1}{\overline{DC}}$                                                                                          |  |
|      | $\lambda$                                                                                                           |  |
|      | Thus $DQ$ parallel to $DC$ with $D$ as a common point.                                                              |  |
|      | D, C and $Q$ are collinear.                                                                                         |  |
| (ii) | Area $ABCD = Area ADQ$                                                                                              |  |
|      | $ \mathbf{a} \times \mathbf{b}  = \frac{1}{2}  \overrightarrow{AD} \times \overrightarrow{AQ} $                     |  |
|      | 1 (1)                                                                                                               |  |
|      | $=\frac{1}{2}\left \mathbf{b}\times\left(\frac{1}{\lambda}\mathbf{a}+\mathbf{b}\right)\right $                      |  |
|      | 1 1, , ,                                                                                                            |  |
|      | $= \frac{1}{2} \left  \frac{\mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{b}}{\mathbf{\lambda}} \right $ |  |
|      | $=\frac{1}{ \mathbf{b}\times\mathbf{a} }$                                                                           |  |
|      | $\frac{1}{2\lambda}$                                                                                                |  |
|      | $\lambda = \frac{1}{2}$                                                                                             |  |
|      | 2                                                                                                                   |  |

| (iii) | $\overrightarrow{AQ} \bullet \overrightarrow{DQ} = \left(\frac{1}{\lambda}\mathbf{a} + \mathbf{b}\right) \bullet \left(\frac{1}{\lambda}\mathbf{a}\right)$ |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|       | $=\frac{1}{\lambda^2}\left \mathbf{a}\right ^2+\frac{1}{\lambda}\mathbf{a}\cdot\mathbf{b}$                                                                 |  |
|       | $=\frac{1}{\lambda^2} \mathbf{a} ^2+\frac{1}{\lambda} \mathbf{a}  \mathbf{b} \cos\theta$                                                                   |  |
|       | $=\frac{\left \mathbf{a}\right ^{2}}{\lambda}\left(\frac{1}{\lambda}+\cos\theta\right)$                                                                    |  |
|       | > 0                                                                                                                                                        |  |
|       | Since $\frac{1}{\lambda} > 1$ and $-1 < \cos \theta < 1$                                                                                                   |  |
|       | Alternatively                                                                                                                                              |  |
|       | Using the value of $\lambda = \frac{1}{2}$ obtained in part (ii),                                                                                          |  |
|       | $\overrightarrow{AQ} \cdot \overrightarrow{DQ} = (2\mathbf{a} + \mathbf{b}) \cdot (2\mathbf{a})$                                                           |  |
|       | $=4\left \mathbf{a}\right ^{2}+2\mathbf{a}\cdot\mathbf{b}$                                                                                                 |  |
|       | $=4\left \mathbf{a}\right ^{2}+2\left \mathbf{a}\right \left \mathbf{b}\right \cos\theta$                                                                  |  |
|       | $=2\left \mathbf{a}\right ^{2}\left(2+\cos\theta\right)$                                                                                                   |  |
|       | > 0                                                                                                                                                        |  |
|       | Since $-1 < \cos\theta < 1$                                                                                                                                |  |