- Ratios involving Rational Numbers
- Map scales
- Direct and Inverse Proportion

1. The surface area of a sphere (S) is directly proportional to the square of its radius. If the radius increases by 15%, find the percentage increase in the surface area.	[2]
2. Arthur, Clement, John are to share a bag of sweets amongst themselves in the ratio 2 : 3 : 4. John obtained 6 sweets more than Arthur, find	
(a) the total number of sweets received by Arthur	[2]
(b) the number of sweets received by Clement	[1]
3. y is inversely proportional to the square root of x and the difference in the values of y when $x = 9$ and when $x = 16$ is 3. Find	
(a) an equation connecting x and y .	[3]
(b) the exact value of x when $y = 5$.	[1]
4. On a map, a straight road measuring 600 m is represented by a line segment of length 7.5 cm.	
(a) Express the scale of the map in the ratio $1: r$.	[1]
(b) The length of a canal on the map is 25 cm. Find the actual length in km.	[1]
(c) The actual area of a school is 22 400 m^2 . Find the area of the school on the map.	[2]
5. A map of Singapore has a scale of 1 : 80 000.	
(a) The actual length of the Singapore River is 3.2 km.Calculate the length, in centimetres, of the river on the map.	[2]
(b) The actual area of the Bishan-Ang Mo Kio Park is 620 000 m^2 . Calculate the area, in square centimetres, of the park on the map.	[2]

6. A map is drawn to a scale of 1 : 40 000.	
(a) This scale can be expressed as 1 cm represents $n \text{ km}$. Find n .	[1]
(b) The distance between a seaport and an airport on the map is 60 cm. Find the actual distance, in kilometres, between the seaport and the airport.	[1]
(c) A bus depot has an actual area of 8 km^2 . Find the area, in square centimetres, of the bus depot on the map.	[2]
7. If $a = \frac{4}{3}b$ and $b = \frac{5}{6}c$, write down the ratio of a : b : c.	[1]
8. It is given that y is inversely proportional to the cube of x . If x is doubled, find the percentage decrease in y .	[3]
9. A packet of sweets is divided among Ahmad, Benny, Carl and Dexter. The number of sweets that Ahmad, Benny and Carl have are in the ratio 5 : 9 : 7. If Carl gets 12 sweets more than Ahmad and Benny gets twice as many sweets as Dexter, find	
(a) the total number of sweets	[2]
(b) the number of sweets that Dexter gets	[1]
10. (a) Express the ratio of 1 minute and 30 seconds to 1 hour in its simplest form.	[1]
10. (b) If $5a = 4b$ and $8b = 3c$, find $a : b : c$.	[1]
11. A map is drawn to a scale of 1 : 20 000.	
(a) The distance from one end of a grassland to the other end is represented by a line of length 8 cm on the map. Calculate the actual distance, giving your answer in kilometres.	[1]
(b) The actual area of the grassland is 2.5 hectares. Calculate the area on the map, giving your answer in square centimetres. $\left[1 \ hectare = 10 \ 000 \ m^2\right]$.	[2]

12. The map of The Singapore Zoo has a scale of 1 : 3000.	
(a) If the length from the entrance to Reptile Garden is 4.5 cm on the map, calculate the actual distance, in kilometres.	[1]
(b) The actual area of the Baboon Enclosure is 0.0225 km^2 . Calculate the area on the map that represents the enclosure, giving your answer in square centimetres.	[1]
13. A map is drawn to a scale of 1 : 50 000.	
(a) Two towns are 24 km apart.Calculate, in centimetres, their distance apart on the map.	[1]
(b) On the map, a farm has an area of 20 cm^2 . Calculate, in square kilometres, the actual area of the farm.	[1]
14. The map of a national park is drawn to a scale of $1 : n$. A lake, which has an actual area of 7.5 km^2 , is represented by an area of 4.8 cm^2 on the map.	
(a) Find the value of <i>n</i> .	[2]
(b) Calculate the actual perimeter of the lake, in km, if its perimeter on the map is 9 cm.	[1]

1. The surface area of a sphere (S) is directly proportional to the square of its radius. If the radius increases by 15%, find the percentage increase in the surface area. $S = kr^{2}$ Let $S = 10, r = 2$ $10 = k(2)^{2}$ $k = \frac{10}{4}$ $\frac{2}{100} \times 115\% = 2.3$ $S = \frac{10}{4}(2.3)^{2}$ $S = 13.225$ Percentage increase $= \frac{new value - original value}{original value} \times 100\%$ Percentage increase $= \frac{13.225 - 10}{10} \times 100\%$ Percentage increase $= 32.25$ $\therefore 32.25\%$	[2]
2. Arthur, Clement, John are to share a bag of sweets amongst themselves in the ratio 2 : 3 : 4. John obtained 6 sweets more than Arthur, find	
(a) the total number of sweets received by Arthur A: C: J 2: 3: 4 $4u - 2u \rightarrow 6$ sweets $\therefore 6$ sweets	[2]
(b) the number of sweets received by Clement $1u \rightarrow 3 \text{ sweets}$ $3u \rightarrow 9 \text{ sweets}$ $\therefore 9 \text{ sweets}$	[1]

3. y is inversely proportional to the square root of x and the difference in the values of y when $x = 9$ and when $x = 16$ is 3. Find	
(a) an equation connecting x and y. $y = \frac{k}{\sqrt{x}}$ $y = \frac{k}{3}$ $y = \frac{k}{4}$ $\frac{k}{3} - \frac{k}{4} = 3$ $k = 36$ $y = \frac{36}{\sqrt{x}}$ $\therefore y = \frac{36}{\sqrt{x}}$	[3]
(b) the exact value of x when $y = 5$. $5 = \frac{36}{\sqrt{x}}$ $5\sqrt{x} = 36$ $\sqrt{x} = 7.2$ $x = \frac{1296}{25}$ $x = 51\frac{21}{25}$ $\therefore x = 51\frac{21}{25}$	[1]

4. On a map, a straight road measuring 600 m is represented by a line segment of length 7.5 cm.	
(a) Express the scale of the map in the ratio $1 : r$. map : actual 7.5 cm : 600 m 7. 5 cm : 60 000 cm \star [1 m = 100 cm] 1 cm : 8000 cm \therefore 1 : 8000	[1]
(b) The length of a canal on the map is 25 cm. Find the actual length in km. 1 cm : 80 m 25 cm : 2000 m 25 cm : 2 km \star [1 km = 1000 m] \therefore 2 km	[1]
(c) The actual area of a school is 22 400 m^2 . Find the area of the school on the map. 1 cm : 80 m 1 cm ² : 6400 m^2 $\frac{22400}{6400} = 3.5$ 3. 5 cm ² : 22 400 m^2 $\therefore 3. 5 cm^2$	[2]

5. A map of Singapore has a scale of 1 : 80 000.	
(a) The actual length of the Singapore River is 3.2 km.	[2]
Calculate the length, in centimetres, of the river on the map. 1 cm : 80 000 cm	
$\frac{1 \text{ cm} : \frac{80000}{10^5} \text{ km}}{10^5} \star [1 \text{ km} = 10^5 \text{ cm}]$	
<mark>1 cm : 0.8 km</mark>	
4 cm : 3.2 km	
$\therefore 4 \text{ cm}$	
(b) The actual area of the Bishan-Ang Mo Kio Park is $620\ 000\ m^2$.	[2]
Calculate the area, in square centimetres, of the park on the map.	
$1 \text{ cm} : \frac{80\ 000}{100} \text{ m}$	
<mark>1 cm : 800 m</mark>	
$\frac{1}{2} cm^2 : 640000m^2$	
$\frac{\frac{620\ 000}{640\ 000}}{640\ 000} = 0.96875$	
$\frac{0.96875}{cm^2} cm^2 = 620\ 000\ m^2$	
$\therefore 0.96875 \ cm^2$	

6. A map is drawn to a scale of 1 : 40 00	00.	
(a) This scale can be expressed as 1 cr 1 cm : 40 000 cm 1 cm : $\frac{40\ 000}{10^5}$ km 1 cm : 0.4 km n = 0.4 $\therefore n = 0.4$	n represents <i>n</i> km. Find <i>n</i> .	[1]
 (b) The distance between a seaport and an airport on the map is 60 cm. Find the actual distance, in kilometres, between the seaport and the airport. 1 cm : 0.4 km 60 cm : 24 km ∴ 24 km 		[1]
(c) A bus depot has an actual area of 8 km^2 . Find the area, in square centimetres, of the bus depot on the map. 1 cm : 0.4 km 1 cm ² : 0.16 km ² $\frac{8}{0.16} = 50$ $50 cm^2 : 8 km^2$ $\therefore 50 cm^2$		[2]
7. If $a = \frac{4}{3}b$ and $b = \frac{5}{6}c$, write down to Method 1: $\frac{a}{b} = \frac{4}{3} = \frac{20}{15}$ $\frac{b}{c} = \frac{5}{6} = \frac{15}{18}$ a : b : c 20 : 15 : 18	the ratio of a : b : c. Method 2: $a = \frac{4}{3}b$ and $b = \frac{5}{6}c$ substitute $b = \frac{5}{6}c$ to $a = \frac{4}{3}b$ $a = \frac{4}{3}(\frac{5}{6}c)$ $a = \frac{20}{18}c, b = \frac{5}{6}c, c = c$ a : b : c 20 : 15 : 18	[1]
∴ 20 : 15 : 18		

8. It is given that y is inversely proportional to the cube of x . If x is doubled,	[3]
find the percentage decrease in y.	
$y = \frac{k}{x^3}$	
Let $y = 2, x = 3$	
$2 = \frac{k}{27}$	
$k = 54 \star [k \text{ is a CONSTANT}]$	
When x is doubled = 3×2	
$y = \frac{54}{6^3}$	
$y = \frac{1}{4}$	
Percentage decrease = $\frac{\frac{1}{4}-2}{2} \times 100\%$	
Percentage decrease = 87.5%	
∴ 87.5%	
9. A packet of sweets is divided among Ahmad, Benny, Carl and Dexter. The number of sweets that Ahmad, Benny and Carl have are in the ratio 5 : 9 : 7. If Carl gets 12 sweets more than Ahmad and Benny gets twice as many sweets as Dexter, find	
(a) the total number of sweets	[2]
A:B:C	
<mark>5:9:7</mark>	
7u - 5u = 2u	
$2u \rightarrow 12 \text{ sweets}$	
$1u \rightarrow 6 sweets$	
Dexter 4.5 <i>u</i>	
Total number of sweets = $(5 + 9 + 7 + 4.5) \times 6$	
Total number of sweets $= 153$	
∴ 153 sweets	
(b) the number of sweets that Dexter gets	[1]
$4.5 \times 6 = 27$	
\therefore 27 sweets	

10. (a) Express the ratio of 1 minute and 30 seconds to 1 hour in its simplest form.	[1]
1 minute and 30 seconds \rightarrow 90 seconds	
$\frac{1 \text{ hour} \rightarrow 3600 \text{ seconds}}{2600 \text{ hour states}}$	
$90:3600 \star [Make them the same unit]$	
1:40 1 - 15	
$\therefore 1:40$	
10. (b) If $5a = 4b$ and $8b = 3c$, find $a : b : c$.	[1]
$a = \frac{4}{5}b, c = \frac{8}{3}b$	
a : b : c	
$\frac{4}{5}b:b:\frac{8}{3}b$	
$\frac{4}{5}: 1: \frac{8}{3}$	
12:15:40	
$\therefore 12: 15: 40$	
11. A map is drawn to a scale of 1 : 20 000.	
(a) The distance from one end of a grassland to the other end is represented by	[1]
a line of length 8 cm on the map. Calculate the actual distance, giving	[1]
your answer in kilometres.	
1 cm : 20 000 cm	
$\frac{1 \text{ cm} : \frac{20\ 000}{10^5} \text{ km}}{10^5}$	
<mark>1 cm : 0.2 km</mark>	
<mark>8 cm : 1.6 km</mark>	
∴ 1.6 km	
(b) The actual area of the grassland is 2.5 hectares. Calculate the area on the	[2]
map, giving your answer in square centimetres. $\left[1 \ hectare = 10 \ 000 \ m^2\right]$.	-
$1 \text{ cm} : 20\ 000 \text{ cm}$	
1 cm : 200 m	
$1 cm^2$: 40 000 m^2	
$\frac{2.5 \ hectares}{2.5 \ hectares} = \frac{2.5 \times 10000}{2.5 \ hectares} = \frac{25000}{2.5 \ hectares}$	
2.5 hectares = 25 000	
$\frac{\frac{25\ 000}{40\ 000}}{=0.625}$	
$\therefore 0.625 \ cm^2$	

12. The map of The Singapore Zoo has a scale of 1 : 3000.	
 (a) If the length from the entrance to Reptile Garden is 4.5 cm on the map, calculate the actual distance, in kilometres. 1 cm : 3000 cm 1 cm : 3000/10⁵ km 1 cm : 0.03 km 4.5 cm : 0.135 km ∴ 0.135 km 	[1]
 (b) The actual area of the Baboon Enclosure is 0. 0225 km². Calculate the area on the map that represents the enclosure, giving your answer in square centimetres. 1 cm : 0.03 km 1 cm² : 0.0009 km² 0.0225/0.0009 = 25 25 cm² : 0.0009 km² ∴ 25 cm² 	[1]
13. A map is drawn to a scale of 1 : 50 000.	
(a) Two towns are 24 km apart. Calculate, in centimetres, their distance apart on the map. 1 cm : 50 000 cm 1 cm : $\frac{50\ 000}{10^5}$ km 1 cm : 0.5 km $\frac{24}{0.5} = 48$ 48 cm : 24 km \therefore 48 cm	[1]
 (b) On the map, a farm has an area of 20 cm². Calculate, in square kilometres, the actual area of the farm. 1 cm : 0.5 km 1 cm² : 0.25 km² 20 cm² : 5 km² ∴ 5 km² 	[1]

14. The map of a national park is drawn to a scale of $1 : n$. A lake, which has an actual area of 7.5 km^2 , is represented by an area of 4.8 cm^2 on the map.	
(a) Find the value of n.	[2]
1:n	
$4.8 \ cm^2$: 7.5 km^2	
$1 cm^2$: $\frac{25}{16} km^2$	
1 cm : 1.25 km	
$1 \text{ cm} : 1.25 \times 10^5 \text{ cm}$	
<mark>1 cm : 125 000 cm</mark>	
1:125 000	
$n = 125\ 000$	
$\therefore n = 125\ 000$	
(b) Calculate the actual perimeter of the lake, in km,	[1]
if its perimeter on the map is 9 cm.	
1 cm : 1.25 km	
<mark>9 cm : 11.25 km</mark>	
$\therefore 11.25 \ km$	
<u> </u>	