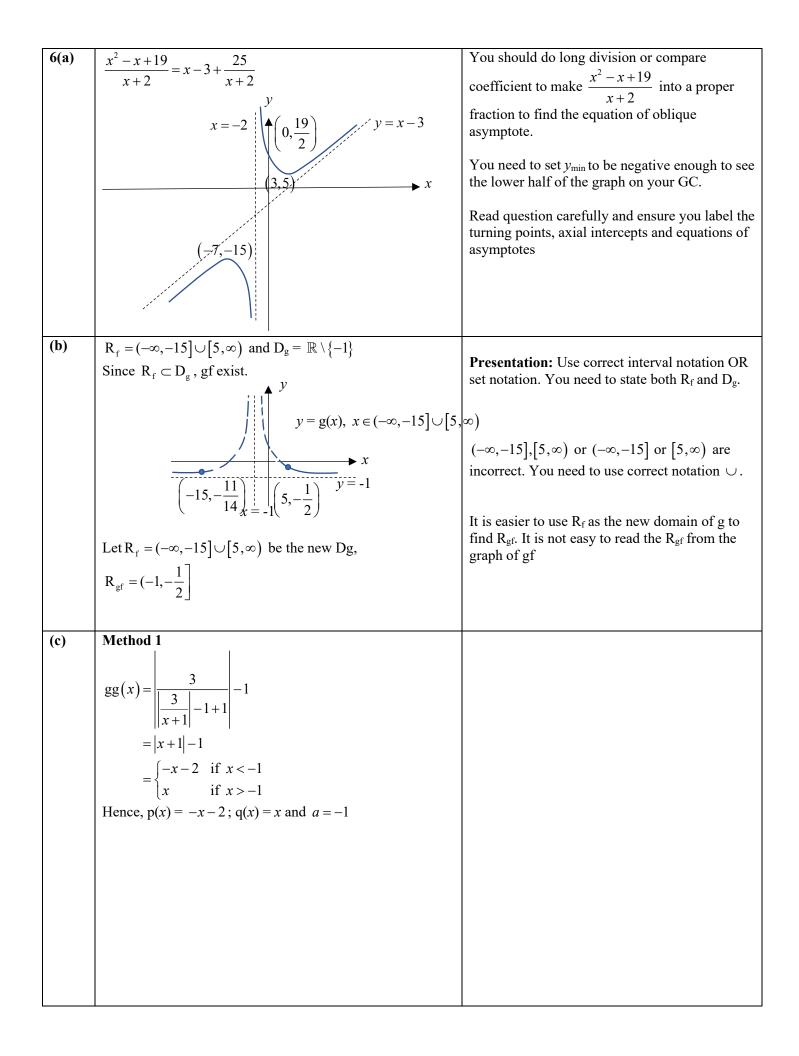
2023 J2 Common Test SOLUTION (For Students)

No.	Solution	Comments
1	$\frac{x-7}{x^2-3x+2} - 1 = \frac{x-7-x^2+3x-2}{x^2-3x+2}$	
	$=-\frac{x^2-4x+9}{x^2-3x+2}$	
	$\frac{x-7}{x^2-3x+2} < 1$	
	$-\frac{x^2 - 4x + 9}{x^2 - 3x + 2} < 0$	
	$\frac{x^2 - 4x + 9}{x^2 - 3x + 2} > 0$	Multiplying -1 on both sides of an inequality
		will cause the inequality sign to change.
	$\frac{(x-2)^2+5}{(x-2)(x-1)} > 0$	Since no GC is allowed , you need to show that
	(x-2)(x-1)	$x^2 - 4x + 9$ is always positive. In this case, we
	Since $(x-2)^2 + 5 > 0$ for all real values of x,	complete the square to show the expression is
	(x-2)(x-1) > 0	always positive.
		Showing $x^2 - 4x + 9 = 0$ has no roots does not
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	allow you to conclude $(x-2)(x-1) > 0$. You
	r clorres 2	need to also mention that coefficient of $x^2 > 0$ and hence, $x^2 - 4x + 9 > 0$ for all real x.
	x < 1 or x > 2	and hence, $x = 4x + 9 > 0$ for all real x.
2(a)	Differentiating $e^{y} = 1 + 3^{x-a}$ w.r.t. x,	
	$e^{y} \frac{dy}{dx} = (3^{x-a}) \times \ln 3$	To remember: For $c > 0$, $\frac{d}{dr}(c^x) = c^x \ln c$
		To remember: You can derive it from scratch.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{3^{x-a}}{\mathrm{e}^{y}}\right) \ln 3$	\mathbf{I} , \mathbf{I} , $\mathbf{r}^{\mathbf{X}}$
		Let $u = c^x$. $\ln u = x \ln c$
	$= \left(\frac{3^{x-a}}{1+3^{x-a}}\right) \times \frac{3^{-(x-a)}}{3^{-(x-a)}} \times \ln 3$	Differentiate w.r.t. x
	$3^{0} \ln 3$	$\frac{1}{u}\left(\frac{\mathrm{d}u}{\mathrm{d}x}\right) = \ln c$
	$=\frac{3^0 \ln 3}{3^{-(x-a)}+3^0}$	
	$=\frac{\ln 3}{1+3^{a-x}}, \ k=3$ (shown)	$\frac{\mathrm{d}u}{\mathrm{d}x} = u \ln c$
	$1+3^{a-x}$,, b (one may)	$=c^{x}\ln c$
	Alternatively,	
	$y = \ln\left(1 + 3^{x-a}\right)$	This is a "show" question, so provide clear 2^{x-a}
		working on how $\frac{3^{x-a}}{1+3^{x-a}}$ can be simplified to
	$\frac{dy}{dx} = \frac{(\ln 3)3^{x-a}}{1+3^{x-a}}$	1.5
	$=\left(\frac{\ln 3}{1+3^{x-a}}\right)\left(\frac{1}{3^{a-x}}\right)\ln 3$	$\frac{1}{1+3^{a-x}}$
	$=\frac{\ln 3}{3^{a-x}+3^0}$	
	5 1 5	
	$=\frac{\ln 3}{1+3^{a-x}}, \ k=3$ (shown)	
L		

(b)	Tangent to <i>C</i> at <i>x</i> = 0 makes an angle of 45° with the positive <i>x</i> -axis. $\frac{dy}{dx} = \frac{\ln 3}{1+3^{a-0}} = \tan 45^\circ = 1$ $\ln 3 = 1+3^a$ $3^a = (\ln 3) - 1$ $a \ln 3 = \ln ((\ln 3) - 1)$ $a = -2.1086 = -2.11$ At <i>x</i> = 0, e ^{<i>y</i>} = 1+3 ^{0-(-2.1086)} <i>y</i> = ln(1+3 ^{2.1086}) Equation of <i>T</i> : $y - \ln(1+3^{2.1086}) = 1(x-0)$ $y = x + 2.41$	To remember: Grad of line = $\tan \theta$ where θ is the angle which the line makes with the positive x-axis.Working should be in 5 s.f. and final answer can be given in 3 s.f.
	Alternatively, using GC NORMAL FLOAT AUTO REAL RADIAN MP x=0 y=0.9999976943X+2.4105839903792 Equation of T: $y = x + 2.41$	Alternatively, Use GC to find equation of tangent is allowed. Sketch $y = \ln(1+3^{x+2.1086})$, then on the graphing screen, press 2nd prgm and select 5: Tangent. Press 0. Notice that the gradient of the tangent given by GC is 1.00. But from the question, you know it should be 1. Hence, equation of <i>T</i> : y = x + 2.41
3	$\ln(\sec x)$ $= \ln\left(\frac{1}{\cos x}\right)$ $= -\ln(\cos x)$ $= -\ln\left(1 - \frac{x^{2}}{2} + \frac{x^{4}}{24} +\right) \text{ (from MF26)}$ $= -\ln\left(1 + \left(-\frac{x^{2}}{2} + \frac{x^{4}}{24}\right) +\right)$ $= -\left[\left(-\frac{x^{2}}{2} + \frac{x^{4}}{24}\right) - \frac{1}{2}\left(-\frac{x^{2}}{2} + \frac{x^{4}}{24}\right)^{2} +\right] \text{ (from MF26)}$ $= -\left[-\frac{x^{2}}{2} + \frac{x^{4}}{24} - \frac{1}{2}\left(\frac{x^{4}}{4} +\right) +\right]$ $= -\left[-\frac{x^{2}}{2} + \frac{x^{4}}{24} - \frac{x^{4}}{8} +\right]$ $= \frac{x^{2}}{2} + \frac{x^{4}}{12} + \text{ (shown)}$	Follow the given instruction: Use standard series from MF26. Repeated differentiation is NOT allowed. Standard series which are found in MF26 are: • $(1+x)^n$ • e^x • $\sin x$ and $\cos x$ • $\ln(1+x)$ We do not have standard series of sec x so use trigo identity and law of logarithm to change $\ln\left(\frac{1}{\cos x}\right)$ to $-\ln(\cos x)$. When expanding $-\ln\left(1+\left(-\frac{x^2}{2}+\frac{x^4}{24}\right)+\right)$, treat $\left(-\frac{x^2}{2}+\frac{x^4}{24}\right)$ as a single term and apply MF26 formula.

	Putting $x = \frac{\pi}{4}$, $\ln\left(\sec\frac{\pi}{4}\right) \approx \frac{1}{2}\left(\frac{\pi}{4}\right)^2 + \frac{1}{12}\left(\frac{\pi}{4}\right)^4$ $\ln\left(\frac{1}{\frac{1}{\sqrt{2}}}\right) \approx \frac{\pi^2}{2(16)} + \frac{\pi^4}{12(256)}$ $\ln\sqrt{2} \approx \frac{\pi^2}{2(16)} + \frac{\pi^4}{12(256)}$ $\frac{1}{2}\ln 2 \approx \frac{\pi^2}{2(16)} + \frac{\pi^4}{12(256)}$ $\ln 2 \approx \frac{\pi^2}{16} + \frac{\pi^4}{1536}, m = 16 \text{ and } n = 1536$ (Shown)	Follow the given instruction: You are asked to substitute $x = \frac{\pi}{4}$.
	$\ln(\sec x) = \frac{x^2}{2} + \frac{x^4}{12} + \dots$ From MF26, $\int \tan x dx = \ln(\sec x) + C$. Differentiating w.r.t. x , $\tan x = x + \frac{x^3}{3} + \dots$	Make full use of MF26 You need to "Deduce" the series expansion for tan x. You need to use the result $\ln(\sec x) = \frac{x^2}{2} + \frac{x^4}{12} + \dots$
4(a) (i)	y = f(3-x) $y = x = 5$ $x = 5$ $(10,-10)$ $(10,-10)$	Method 1: $y = f(x) \rightarrow y = f(x+3) \rightarrow y = f(-x+3)$ Step 1: Replace x with x + 3 Translate graph 3 units in the negative x-direction Step 2: Replace x with -x Reflect the graph in the y-axis Method 2: $y = f(x) \rightarrow y = f(-x) \rightarrow y = f(-(x-3))$ y = f(3-x) Step 1: Replace x with -x Reflect the graph in the y-axis Step 2: Replace x with x - 3 Translate graph 3 units in the positive x-direction
(a) (ii)	$y = \frac{1}{f(x)}$ $y = 0$ $(-2,0)$ $(2,0)$ $(-7, -\frac{1}{10})$ $x = 0$ $x = 6$	You need to sketch the tail-end behaviour correctly. As $x \to \pm \infty$, $f(x) \to \pm \infty$ and $\frac{1}{f(x)} \to 0$. Label the features of your graph as stated in the question. Note that $(2, -\frac{1}{2})$ should be positioned lower than $(-7, -\frac{1}{10})$.

4(b)	<u> </u>	1 1
4(0)	$a(x-2)^{2} = a - \frac{1}{\left[f(x)\right]^{2}}$	In (a)(ii), $y = \frac{1}{f(x)}$. So replace $\frac{1}{\left\lceil f(x) \right\rceil^2}$ as
	$\lfloor f(x) \rfloor$	
	$a(x-2)^{2} = a - y^{2}$ $(x-2)^{2} + \frac{y^{2}}{a} = 1$	y^2
	$(x - 2)^2 + y^2 = 1$	v^2
	$(x-2) + \frac{a}{a} = 1$	$(x-2)^2 + \frac{y^2}{a} = 1$ is an ellipse with centre
		(2,0)
	According to the sketch on the diagram in part(a)(ii),	
	$a > \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ for there to be 2 distinct real roots.	
5(a)	$x+1=\frac{z-2}{2}$, $y=3$ can be written as	(1)
	5	
	$r = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}, \ \lambda \in \mathbb{R}$	
	$r = \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \lambda \begin{bmatrix} 0 \\ 2 \end{bmatrix}, \ \lambda \in \mathbb{R}$	
	$\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$	0 3 <i>A</i> (-3, 1, 0) (-1, 3, 2)
		(-1, 3, 2)
	Normal to π_1 : $\begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} - \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$	
	Normal to π_1 : $ 3 - 1 \times 0 $	Note the difference between "Show" and
	$\lfloor \lfloor 2 \rfloor \ \lfloor 0 \rfloor \rfloor \ \lfloor 3 \rfloor$	"Verify". To show, we are not allowed to use the given result. You need to show the given
	(2) (1)	the given result. You need to show the given result. Hence, you should not be verifying
	$= \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$	
	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix}$	$ \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ -2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \\ -2 \\ 1 \end{pmatrix} = $ equal to 0.
	$\begin{pmatrix} 6 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$	$\begin{vmatrix} 0 \\ 3 \end{vmatrix} = 1$ $\begin{vmatrix} 1 \\ 1 \end{vmatrix} = 1$
		(3)(-1)(1)(-1)
	$= \begin{pmatrix} 6 \\ -4 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$	This is a "show" question. You should write
	$\begin{pmatrix} -2 \end{pmatrix}$ $\begin{pmatrix} -1 \end{pmatrix}$	
	$\begin{pmatrix} 3 \end{pmatrix}$	$\begin{pmatrix} 6 \\ -4 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}$ to illustrate that the normal is //
	Hence, π_1 is perpendicular to -2	$\begin{vmatrix} -2 \\ -2 \end{vmatrix} = \begin{vmatrix} -1 \\ -1 \end{vmatrix}$
	(-1)	
	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} -3 \end{pmatrix}$	
	$ \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix} = -9 - 2 = -11 $	to $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ and provide a conclusion.
	$\left \left -1 \right \left 0 \right \right\rangle$	(-1)
	Equation of π_1 : $3x - 2y - z = -11$	
(b)	$\begin{array}{c} \textbf{Method 1} \\ \textbf{Method 1} \end{array}$	
	Eq of perpendicular which pass through <i>B</i> :	Method 1: See N as the intersection of line and
		plane
	$\mathbf{r} = \begin{pmatrix} 5 \\ -6 \\ 10 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ -2 \\ -1 \end{pmatrix}, \ \beta \in \mathbb{R}$	
	$\begin{pmatrix} 10 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$	Method 2: See \overline{BN} as projection of \overline{BA} on
	$\begin{bmatrix} (5) & (3) \end{bmatrix} (2)$	normal of plane and $\overrightarrow{ON} = \overrightarrow{OB} + \overrightarrow{BN}$
	$ \begin{vmatrix} 5 \\ -6 \\ 10 \end{vmatrix} + \beta \begin{vmatrix} 3 \\ -2 \\ -1 \end{vmatrix} \cdot \begin{vmatrix} 3 \\ -2 \\ -1 \end{vmatrix} = -11 $	(or \overline{NB} as projection of \overline{AB} on normal of
	$\begin{vmatrix} -0 \\ + \beta \\ -2 \end{vmatrix} + \begin{vmatrix} -2 \\ -1 \end{vmatrix} = -11$	plane)
	$15 + 9\beta + 12 + 4\beta - 10 + \beta = -11$	
	$14\beta = -28$	
	$\beta = -2$	



	Method 2	Note that for both $x > -1$ and $x < -1$,
	$g(x) = \begin{cases} -\frac{3}{x+1} - 1, & x < -1 \\ \frac{3}{x+1} - 1, & x > -1 \end{cases}$	g(x) > -1.
	$gg(x) = \begin{cases} \frac{3}{-\frac{3}{x+1} - 1 + 1} - 1, & x < -1 \\ \frac{3}{-\frac{3}{x+1} - 1 + 1} - 1, & x > -1 \\ \frac{3}{-\frac{3}{x+1} - 1 + 1} - 1 + 1 \\ = \begin{cases} -x - 2, & x < -1 \\ x, & x > -1 \end{cases}$	
	Hence, $p(x) = -x - 2$; $q(x) = x$ and $a = -1$	
7(a)	Let <i>m</i> kg be Mr Eccles' mass $\frac{dm}{dt} = k(C - 36m)$ Mass is maintained constant at 115 kg, $\frac{dm}{dt} = 0$ $k(C - 36m) = 0$ $C = 36(115) = 4140$ Alternatively, Mr Eccles needs $36(115) = 4140$ calories to meet his daily energy needs. If he consumes 4140 calories a day, there will be <u>no excess calories</u> and hence his weight will be constant. Hence, $C = 4140$.	It is not enough to write C = 36(115) = 4140. You need to justify your answer.
(b)	Calorie intake = 3200 $\frac{dm}{dt} = k(3200 - 36m)$ $-\frac{1}{36} \int \frac{-36}{3200 - 36m} dm = \int k dt$ $\ln 3200 - 36m = -36kt + c$ $ 3200 - 36m = Ae^{-36kt} \text{ (where } A = e^c\text{)}$ $3200 - 36m = Be^{-36kt}$ $36m = 3200 - Be^{-36kt}$ $m = \frac{800}{9} - De^{-36kt} \text{ (where } D = \frac{B}{36}\text{)}$	Read and unpack question carefully: "The rate of change of the body mass is proportional to the number of excess calories per day which is calculated by subtracting the calories to meet his daily energy needs from his calorie intake per day." $\frac{dm}{dt} = k(3200 - 36m)$ Calories to meet his daily energy needs = 36m Replace modulus first before substituting in the conditions.

[Civen that when $t = 0$, $w = 115$	
	Given that when $t = 0$, $m = 115$	
	$115 = \frac{800}{9} - De^0$	
	$D = -\frac{235}{9} \approx -26.111$	
	Given that when $t = 20$, $m = 115 - 4 = 111$	
	$111 = \frac{800}{9} - \left(-\frac{235}{9}\right)e^{-36k(20)}$	
	$\frac{199}{235} = e^{-720k}$	
	$k = -\frac{1}{720} \ln \frac{199}{235} \approx 2.3094 \times 10^{-4}$	
	Hence	
	$m = \frac{800}{9} + \frac{235}{9} e^{\left(\frac{1}{20}\ln\frac{199}{235}\right)t}$	
	(i.e. $m = \frac{800}{9} + \frac{235}{9} \left(\frac{199}{235}\right)^{\frac{t}{20}}$, $m = 88.9 + 26.1e^{-0.00831t}$)	
(c)	m	
	↑	
	115	Answer in context: Sketch graph for $t \ge 0$ only and label equation of the asymptote.
	800	
	$\frac{800}{9} \qquad \qquad$	
	$m = \frac{1}{9}$	
	t	
	Mr Eccles is <u>not able to meet</u> his target of 85 kg since from	
	the graph, it is observed that Mr Eccles' mass will <u>decrease</u>	You need to explain why Mr Eccles is not able
	with time to approach but not go below $\frac{800}{9} = 88.9 (3 \text{ sf})$.	to meet his target.
(d)	Let the greatest daily calorie intake be C_{max}	
	$C_{\max} - 36m = Be^{-36kt}$	
	$36m = C_{\max} - Be^{-36kt}$	
	$m = \frac{C_{\text{max}}}{36} - De^{-36kt}$, where $D = \frac{B}{36}$	
	The equation of the horizontal asymptote is $m = \frac{C_{\text{max}}}{36}$.	
	To reach his target of 85 kg	If he consumes 3060 calories, his weight will
	$\frac{C_{\text{max}}}{36} < 85$	tend to 85 kg, but never reached 85 kg. Hence,
	$\frac{36}{C_{\text{max}}} < 3060$	his greatest daily calories intake to meet his
	$C_{max} < 5000$ Hence the greatest daily calorie intake to reach the 85 kg	target is 3059.
	target is 3059 .	
L	1 -	

)	Method 1: Union	
	Case 1 : No. of codes that start and end with the same letter P(case 1) = $\frac{1}{26}$	Let <i>A</i> : Event which codes that start and end with the same letter and <i>B</i> be event which codes with exactly 2 digits the same.
	Case 2 : No. of codes with exactly 2 digits the same	Probability required
	P(case 2) = $\frac{1}{9} \times \frac{8}{9} \times \frac{3!}{2!} = \frac{8}{27}$	$= P(A \cup B)$ = P(A) + P(B) - P(A \cap B)
	Case 3 : No. of codes that start and end with the same letter and have exactly 2 digits the same	Note that in this case, A and B are independent. Hence,
	P(case 3) = $\frac{1}{26} \times \frac{1}{9} \times \frac{8}{9} \times \frac{3!}{2!} = \frac{4}{351}$	$P(A \cap B) = P(A) \times P(B).$
	Hence, required probability $=$ $\frac{1}{26} + \frac{8}{27} - \frac{4}{351} = \frac{227}{702} \approx 0.323$	
	Method 2: Union	
	Case 1 : No. of codes that start and end with the same letter $= 26 \times 1 \times 9^3 = 18954$	
	Case 2: No. of codes with exactly 2 digits the same	
	= $26 \times 26 \times 9 \times 8 \times \frac{3!}{2!}$ (OR $26^2 \times {}^9C_2 \times \frac{3!}{2!} \times 2$)=146016	
	Case 3 : No. of codes that start and end with the same letter and have exactly 2 digits the same	
	= $26 \times 9 \times 8 \times \frac{3!}{2!}$ (OR ²⁶ C ₁ × ⁹ C ₂ × $\frac{3!}{2!}$ ×2)=5616	
	Required probability = $\frac{18954 + 146016 - 5616}{26^2 \times 9^3} = \frac{227}{702} \approx 0.323$	
	Method 3: Direct approach	
	Case 1 : No. of codes that start and end with the same letter and any 3 digits	
	$P(\text{Case 1}) = \frac{26 \times 9^3}{26^2 \times 9^3} = \frac{1}{26}$	
	Case 2 : No. of codes with both letters different and exactly 2 digits the same	
	$P(\text{Case 2}) = \frac{26 \times 25 \times 9 \times 8 \times \frac{3!}{2!}}{26^2 \times 9^3} = \frac{100}{351}$	
	Required probability = $=\frac{1}{26} + \frac{100}{351} = \frac{227}{702} \approx 0.323$	

(b)	Method 1	
	Required probability $= \frac{1}{26} \times \frac{5}{9} \times \frac{4}{9} \times \frac{4}{9} \times \frac{3!}{2!} \times \frac{25}{26} \times 2$ $= \frac{12000}{26^2 9^3}$ ≈ 0.0244 Method 2	
	Case 1: no repeated digits	
	No. of ways = ²⁵ $C_1 \times 2! \times {}^5 C_1 \times {}^4 C_2 \times 3! = 9000$ Out of 25 5 odd digits choose letters (excl E) 1, 4 even digits choose 1; E choose 2, arrange all can be first or 3 digits last letter	
	Case 2: one repeated even digit	
	No. of ways = ²⁵ $C_1 \times 2 \times {}^5 C_1 \times {}^4 C_1 \times \frac{3!}{2!} = 3000$ Out of 25 5 odd digits choose 1, 4 letters (excl E) even digits choose 1 only choose 1; E (since it is repeated), can be first or arrange all 3 digits last letter	
	Hence, required probability = $\frac{9000 + 3000}{26^2 \times 9^3} \approx 0.0244$	
9(a)	The binomial distribution is appropriate in modelling the number of coffee-flavoured cookies in a box because the binomial conditions are justifiable: 1. Each box contains 12 selected cookies (i.e. 12 trials).	The question is asking for the 4 conditions to make B.D. an appropriate model, it is not asking for assumptions.
	 2. Each cookie is either 'coffee-flavoured' or 'not coffee-flavoured' (i.e. 2 possible outcomes). 	
	3. The probability that a cookie is coffee-flavoured cookie is constant at 0.2.	
	4. The flavour of a cookie is independent of that of any other cookie since selections are made from large quantities of cookies	
(b)	Let X be the number of coffee-flavoured cookies in a box of 12 cookies. $X \sim B(12, 0.2)$	You need to define your variable and state its distribution before proceeding with the calculation.
	$P(4 \le X \le 8) = P(X \le 8) - P(X \le 3)$	"no more than 8" means ≤ 8
	$= 0.20537 \approx 0.205$	

(c)	$E(\overline{X}) = E(X)$	Clear presentation is expected. You need
	$=12 \times 0.2$	to write down "Since $n = 50$ is large, by
	= 2.4	Central Limit Theorem,
		$\overline{X} \sim N\left(2.4, \frac{1.92}{50}\right)$ approximately" before
	$\operatorname{Var}(\overline{X}) = \frac{\operatorname{Var}(X)}{50}$	·
	50	calculating $P(\overline{X} \ge 2.5)$
	$=\frac{12 \times 0.2 \times 0.8}{50}$	
	$=\frac{1.92}{50}$	
	50	
	Since $n = 50$ is large, by Central Limit Theorem,	
	$\overline{X} \sim N\left(2.4, \frac{1.92}{50}\right)$ approximately	
	$P(\overline{X} \ge 2.5) = 0.30492 \approx 0.305$	
(d)	Let M be the number of matcha-flavoured cookies in a box of 12.	
	$M \sim B(12, p)$	
	P(M = 2) < P(M = 3)	
	$\binom{12}{2}p^{2}(1-p)^{10} < \binom{12}{3}p^{3}(1-p)^{9}$	If 3 is the modal number, then
	(2) $(3)66(1-p) < 220p$ since $p > 0$ and $1-p > 0$	P(M=3) > P(M=2) and
		$\mathbf{P}(M=3) > \mathbf{P}(M=4) .$
	$p > \frac{3}{12}$	
	15	
	And $P(M = 3) > P(M = 4)$	
	$\binom{12}{3}p^{3}(1-p)^{9} > \binom{12}{4}p^{4}(1-p)^{8}$	
	220(1-p) > 495p since $p > 0$ and $1-p > 0$	
	$p < \frac{4}{13}$	
	$p < \frac{13}{13}$	Read question, answer should be in
	$\therefore \frac{3}{13}$	exact form and reduced to simplest form.
	13 13 13	
10(a)	1 2 1	
	$\frac{1}{6} + a + \frac{2}{5} + b = 1$	
	$a + b = \frac{13}{30}$ (1)	
	Given mean number = $\frac{43}{10}$	
	$2\left(\frac{1}{6}\right) + 3a + 5\left(\frac{2}{5}\right) + 8b = \frac{43}{10}$	
	$3a + 8b = \frac{59}{30}(2)$	
	Solving, $a = \frac{3}{10}, b = \frac{2}{15}$	

(b)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$q = P(X=0) = \left(\frac{1}{6}\right)^2 + \left(\frac{3}{10}\right)^2 + \left(\frac{2}{5}\right)^2 + \left(\frac{2}{15}\right)^2$ $= \frac{133}{450}$	
	$r = P(X=2) = 2\left(\frac{3}{10}\right)\left(\frac{2}{5}\right) = \frac{6}{25}$ (or 0.24)	
	$s = P(X=3) = 2\left(\frac{1}{6}\right)\left(\frac{2}{5}\right) + 2\left(\frac{2}{5}\right)\left(\frac{2}{15}\right) = \frac{6}{25}$ (or 0.24)	
	Probability Distribution of X: $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	You can check your answer by adding up the probabilities to make sure it equals to 1.
(c)	P(X < 3.5) = 1 - P(X = 5) - P(X = 6)	It is safer to use $P(X < 3.5)$ as
	$=1-\left(\frac{2}{25}+\frac{2}{45}\right)$	1 - P(X = 5) - P(X = 6). The values of
	$=\frac{197}{225}$ or 0.876	P(X = 5) and $P(X = 6)$ have been given in the question.
	$-\frac{1}{225}$ or 0.870	S
	Alternatively, P(X < 3.5) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)	
	$=\frac{197}{225} \text{ or } 0.876$	
(last part)	$E(X) = \frac{1}{10} + 2\left(\frac{6}{25}\right) + 3\left(\frac{6}{25}\right) + 5\left(\frac{2}{25}\right) + 6\left(\frac{2}{45}\right)$	
	$=\frac{59}{30} \approx 1.96667$	
	E(2X) > k	
	2E(X) > k $\therefore 0 < k < 3.93$	Final answer in 2 d.p. for money
11(a)	Let F g be the mass of a fruit, J g be the mass of a juice, T g be the total mass of a fruit and juice	
	$F \sim N(300, 10^2)$	Follow the given instructions: The bell- shaped curve must be labelled with both tails almost touching axis when near 260 and 340
	260 300 340 f	

(b)	$F \sim N(300, 10^{2})$ $\overline{F} \sim N\left(300, \frac{10^{2}}{n}\right)$ $P(\overline{F} > 301) = 0.233$ $P\left(Z > \frac{301 - 300}{\frac{10}{\sqrt{n}}}\right) = 0.233$ $\frac{301 - 300}{10} \approx 0.72900$	Presentation: You have been explicitly told to state clearly the values of the parameters of any normal distribution you use. You need to state distribution of \overline{F} .
	$ \frac{\sqrt{n}}{\sqrt{n}} \\ \sqrt{n} \approx 7.2900 \\ n \approx 53.1441 \\ n = 53 $	Do normal rounding off here.
(c)	$F \sim N(300,10^{2}), T \sim N(400,8^{2})$ $F_{1} + F_{2} + F_{3} + F_{4} - 3T \sim N(4(300) - 3(400), 4(10^{2}) + 3^{2}(8^{2}))$ $K = F_{1} + F_{2} + F_{3} + F_{4} - 3T \sim N(0,976)$ $P(K \le 10) = P(-10 \le K \le 10)$ $= 0.25110 \approx 0.251$	Read question carefully Note that $F_1 + F_2 + F_3 + F_4 \neq 4F$ "Differ" implies the difference is between -10 and 10.
(d)	J = T - F $J \sim N(400 - 300,8^{2} + 10^{2}) \text{ (i.e. } J \sim N(100,164)\text{)}$ $P(J > 110) = 0.21744 \approx 0.217$	Note that $\operatorname{Var}(T-F) = \operatorname{Var}(T) + \operatorname{Var}(F)$
	The total mass of fruit and juice in a randomly chosen tin and the mass of fruit in a randomly chosen tin are independent. i.e. T and F are independent.	In (c), we calculate var($F_1 + F_2 + F_3 + F_4 - 3T$) and in (d), we calculate var(T – F). For both cases, we need to assume <i>T</i> and <i>F</i> to be independent.