	NATIONAL JUNIOR COLLEGE
	SENIOR HIGH 2 PRELIMINARY EXAMINATION
	Higher 2
CANDIDATE NAME	
SUBJECT CLASS	REGISTRATION NUMBER

PHYSICS

9749/02

Paper 2 Structured Questions Candidate answers on the Question Paper.

24 August 2023 2 hours

No Additional Materials are required.

READ THE INSTRUCTION FIRST

Write your subject class, registration number and name on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate.

Answers **all** questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1	/ 10	
2	/ 10	
3	/ 8	
4	/ 6	
5	/ 6	
6	/ 10	
7	/ 10	
8	/ 20	
Total (80m)		

Data

speed of light in free space	$c = 3.00 \times 10^8 \mathrm{ms^{-1}}$
permeability of free space	$\mu_0 = 4\pi \times 10^{-7} \mathrm{H}\mathrm{m}^{-1}$
permittivity of free space	$\varepsilon_0 = 8.85 \times 10^{-12} \mathrm{F m^{-1}}$
	$(1/(36\pi)) \times 10^{-9} \mathrm{F}\mathrm{m}^{-1}$
elementary charge	$e = 1.60 \times 10^{-19} \text{C}$
the Planck constant	$h = 6.63 \times 10^{-34} \mathrm{Js}$
unified atomic mass constant	$u = 1.66 \times 10^{-27} \mathrm{kg}$
rest mass of electron	$m_{\rm e}$ = 9.11 × 10 ⁻³¹ kg
rest mass of proton	$m_{\rm p} = 1.67 \times 10^{-27} \rm kg$
molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
the Avogadro constant	$N_{\rm A}$ = 6.02 × 10 ²³ mol ⁻¹
the Boltzmann constant	$k = 1.38 \times 10^{-23} \mathrm{J}\mathrm{K}^{-1}$
gravitational constant	$G = 6.67 \times 10^{-11} \mathrm{N}\mathrm{m}^2 \mathrm{kg}^{-2}$
acceleration of free fall	$g = 9.81 \mathrm{m s^{-2}}$

Formulae

uniformly accelerated motion	$s = ut + \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$
work done on/by a gas	$W = p \Delta V$
hydrostatic pressure	$p = \rho g h$
gravitational potential	$\phi = -Gm/r$
temperature	<i>T</i> /K = <i>T</i> /°C + 273.15
pressure of an ideal gas	$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$
mean translational kinetic energy of an ideal gas molecule	$E=\frac{3}{2}kT$
displacement of particle in s.h.m.	$x = x_0 \sin \omega t$
velocity of particle in s.h.m.	$v = v_0 \cos \omega t$ $= \pm \omega \sqrt{x_0^2 - x^2}$
electric current	I = Anvq
resistors in series	$R = R_1 + R_2 + \ldots$
resistors in parallel	$1/R = 1/R_1 + 1/R_2 + \dots$
electric potential	$V = \frac{Q}{4\pi\varepsilon_0 r}$
alternating current/voltage	$x = x_0 \sin \omega t$
magnetic flux density due to a long straight wire	$B = \frac{\mu_0 I}{2\pi d}$
magnetic flux density due to a flat circular coil	$B = \frac{\mu_0 NI}{2r}$
magnetic flux density due to a long solenoid	$B = \mu_0 n I$
radioactive decay	$x = x_0 \exp(-\lambda t)$
decay constant	$\lambda = \frac{\ln 2}{\frac{t_1}{2}}$

	% uncertainty = absolute uncertainty/ data point. M1 Hence the larger the data point, the smaller the % uncertaintiy since the absolute uncertaint fixed. Hence more reliable. A1	ty is
(c)	Determine the speed of the sphere 1.2 s after release.	
	speed = m s ⁻¹	[4]
	horizontal speed = 3.2 m s^{-1} C1use of v = gt or s = $1/2 \text{ gt}^2$ vertical speed = $11.6 \text{ or } 11.7 \text{ m s}^{-1}$ use of Pythagoras' theorem;M1speed = 12 m s^{-1} A1	
(d)	On the grid, draw the path of the sphere assuming air resistance is not negligible.	[2]
	line always to left of spheres;B1becoming more vertical/ steeper;B1	
	[Total	: 10]

2	(a)	A prototype space shuttle attached to a rocket stands vertically on its launching pad. The total mass of the spaceship and rocket (inclusive of the mass of a man in it and its fuel) is 8.5×10^4 kg. On ignition, gas is ejected from the rocket at a speed of 6.0×10^3 m s ⁻¹ relative to the rocket, and the fuel is consumed at a constant rate of 138 kg s ⁻¹ .		
		Calcu	ılate	
		<i>(</i> i)	the thrust on the rocket	
			thrust = N [1]	
			$F = v \frac{dm}{dt} = 6.0 \times 10^3 \times 138 = 8.28 \times 10^5 \text{ N}$ A1	
		(ii)	the initial weight of the rocket.	
			weight = N [1]	
		$W = mg = 8.5 \times 10^4 \times 9.81 = 8.34 \times 10^5 \text{ N}$ A1		
		(III) the time it takes for the fuel to burn before the rocket leaves the launching pad.		
			Diff between thrust and weight = 833850 – 828000 = 5850 N C1	
			$t = \frac{833850 - 828000}{138 \times 9.81} = 4.32 \mathrm{s} \qquad \text{A1}$	
		(iv)	the acceleration of the rocket after the fuel is consumed for 200 s.	
		m – 8	acceleration = $m s^{-2}$ [2]	
		8 28	$\times 10^5 - 57400 \times 9.81 = ma = 57400a$ M1	
		a=4	$.615 \text{ m s}^{-2} = 4.62 \text{ m s}^{-2}$ A1	
	<i>(</i>) ,			
	(b)	Body	A of mass 2.0 kg moves towards Body B of 3.0 kg as illustrated in Fig. 2.1.	

		Body A Fig. 2.1
	(i)	Explain why it is not possible for both bodies to stop at the same instant.
		[11]
		There is not momentum before the collision. There will be the same momentum throughout
		the whole collision. Therefore it is not possible for both the nucleus to be at rest at the same time. B1
	(ii)	Fig. 2.2 is a velocity-time sketch graph showing how the velocity of each body varies. The interaction between the bodies is elastic.
		velocity v o v Fig. 2.2
		Label the graph to show
		1. which curve is for body A, [1]
<u>├</u> ──	2 the times at which each hady stops	
		3. the time at which they are at their distance of closest approach. [1] 1. Since Body A is lighter, the change in velocity is bigger. A1 [1] 2. Body A stops first then Body B. A1 [1] 3. Interception of the two curves is the time of closest approach.A1

(ii)	Show that the upthrust acting on the buoy is 430 N.
	[2]
	Horizontal component of tension in rope = force of sea current
	$T \sin 25^\circ = 140$
	Vertical component of tension in rope + weight of buoy = upthrust on buoy $T cos 25^{\circ} + 130 = U$ [B1 expressions for forces]
	$\tan 25^\circ = \frac{140}{U-130}$ [M1 manipulation of equations]
	U = 430 N [A0]
(iii)	Determine the percentage of the volume of the buoy that is submerged in the sea. The density of sea water is 1000 kg m ⁻³ and density of the buoy is 230 kg m ⁻³ .
	percentage of volume of buoy submerged =
Volu Upth	me of the buoy $= \frac{m}{\rho} = \frac{130/9.81}{230} = 0.0576 m^3$ [C1] rust $= V \rho g$
Volu	me of buoy submerged = $\frac{430}{1000 \times 9.81}$ = 0.0438 m ³ [C1]
Perc	entage of volume submerged = $\frac{0.0438}{0.0576} \times 100\% = 76\%$ [A1]
	[Total: 8]

		[3]
	The neutral point between the Earth and Moon is closer to the moon. The neutral point is whe the gravitational potential energy of the rocket is the highest. Hence, the gravitational potential energy will increase before decreasing at the neutral point as the rocket travels to the moon. [B1 stating on GPE changes]	ere tial
	As the gravitational potential energy of the rocket increases, the amount of kinetic energy t rocket needs to escape to infinity decreases. [M1 relationship between GPE and KE]	the
	Hence, the escape velocity of the rocket will decrease until the neutral point where it increase [A1]	es.
	[Total:	: 6]

5	Two small coherent sound sources S_1 and S_2 are set up as shown in Fig.5.1 below.			
		Α		
	н р			
	S ₁ sound detector			
		• N		
		s•		
			2	
			Fig.5.1	
			B	
	A so S₁N	und o = S ₂ N	detector is moved along a line AB that is parallel to S_1S_2 . N is the point on AB such that I. The sound waves from S_1 and S_2 have frequency 2.80 kHz and speed 336 m s ⁻¹ .	
	(a)	Sho	w that the wavelength of the waves is 12.0 cm.	
	[1]			
	Using the wave equation $v=t\lambda$,			
	$\lambda = v/f = 336/2.8 \times 10^3$ M1 = 0.120 m = 12.0 cm (shown) A0			
	(b) The detector, when placed at N. indicates a maximum intensity of sound. As it is moved from N			
		to a and s	point P, the intensity varies between high and low values. At P, the distance S_1P is 372 cm S_2P is 402 cm.	
		Dete	rmine, with suitable explanation.	
		(1)	whether the interview of sound at D is high an low	
		()	whether the intensity of sound at P is high of low,	
	[2]			
			Path difference = $402-372 = 30 \text{ cm} = (2 \frac{1}{2}) \lambda$. [B1]	
			Given that a maximum intensity occurs at N, we can infer that sources S_1 and S_2 are producing waves in phase with each other.	
			Hence a path difference of odd integer multiple of half-wavelength implies that the waves arrive at P in antiphase. They would superpose destructively producing sound of low intensity. [B1]	
		(ii)	the number of high intensity regions that are found between N and P. Do not include the	
			maximum at N.	

	[3]
	From N to P, path difference increases from zero to (2 1/2) λ. [B1]
	This means that there are two high intensity regions where constructive interference occurs. [B1]
	They are located at the region where the path difference is 1 λ and 2 λ . [B1]
	[Total: 6]

-	-		
		$P = (2)2 \times (0.1 + 0.5 + 3.4)$	
		= 16 W	A1
	<i>(</i> 1)		
	(d)	Determine the efficiency of the circuit.	
			efficiency =
		efficiency = useful power / output power	M1
		-21/40	C1
		- 24 / 40	
		= 60%	Al
	(e)	A student suggests that the value of resist	tance R will not affect the efficiency calculated
	(-)	in (d) Explain if you agree with the studer	nt
		In (u). Explain in you agree with the studer	н.
			[1]
			[1]
		Agree, since efficiency = $V_{battery}/E_{generator}$ which	is independent of R. B1
			[Total: 10]

7	(a)	A spring that has an unstretched length of 0.500 m is attached to a f kg is attached to the spring and gently lowered until equilibrium is re	ixed point. A mass of 0.400 eached. The spring has then								
		stretched elastically by a distance of 0.150 m.									
		Calculate, for the stretching of the spring									
		(i) the loss in gravitational potential energy of the mass,									
			loss = J [1]								
		$loss = mgh = 0.400 \times 9.81 \times 0.150 = 0.589 J$									
		(ii) the electic potential energy acided by the enring									
		(ii) The elastic potential energy gained by the spring.									
			gain = [1]								
		Gain in EPE $-\frac{1}{2}Ex - \frac{1}{2}max - \frac{1}{2} \times 0.400 \times 9.81 \times 0.150 - 0.294 I$	gan – 0 [1]								
		$\sum_{n=1}^{\infty} \sum_{j=1}^{\infty} \sum_{j$									
	(b)	Explain why the two answers to (a) are different									

_			
			••
			[2]
	When	the mass is lowered gently, there is a resistive or supporting force that prevents the	<u> </u>
	mass f	rom accelerating. [B1]	
	As a re	esult, part of the loss in gravitational potential energy is into the work done against	
	the sup	oporting force [B1]	
	And the	e gain in elastic potential energy is less than the loss in gravitational potential energy.	
(c)	The loa	ad on the spring is now set into simple harmonic motion of amplitude 0.150 m.	
	Show t	that the angular frequency of the oscillation is 8.09 rad s ⁻¹ .	
			[3]
	Spring	constant $-\frac{F}{2} - \frac{mg}{mg} - \frac{0.400 \times 9.81}{2.616} = 26.16 \text{ M} \text{ m}^{-1}$ [C1]	
	Spring	$\text{Constant} - \frac{1}{e} - \frac{1}{e} = \frac{1}{0.15} = 20.16 \text{ M/m} [C1]$	
	energ		
	= tensi	bn – weight	
	= ke -	mg	
	= 26.1	$6 \times (2 \times 0.15) - 0.400 \times 9.81 = 3.924 N $ [M1]	
	For shi	$m, F = -m\omega^2 x$	
	At amp	litude position $3.924 = m\omega^2 x_0 = 0.400\omega^2(0.15)$ [M1]	
	$\omega = 8.0$ 1.200	9 raa s ~ [A0]	
	0.800		
(1)			
(d)			
	0.400		
		L	
	0	0.100 0.200 0.300 extension / r	n

8 In a refrigeration system, a fluid known as a refrigerant undergoes alternating changes in its phase, pressure and volume to produce cooling. In this question, you will be guided to design a simple refrigeration system using the data provided.

Fig. 8.1 shows the variation of pressure against volume of the refrigerant as it cycles through four states P, Q, R and S. The four stages of the cyclic process are evaporation, condensation, compression and throttling (pressure releasing).

	all c	orrect [B1]						
	The enthalpy of a system can be understood as the measure of a system's total ther content per unit mass while the entropy of a system can be understood as the measure's enthalpy per unit temperature that is unavailable for doing useful work.							
	as a	a saturated liquid a	at various press	sures and ter	nperatures.	ngerant as a	a saturated v	apour and
	EnthalpyEntropyPressureTemperatureh / kJ kg^{-1}s / kJ kg^{-1} K^{-1}							
		P/kPa	T/K	Saturated Liquid	Saturated Vapour	Saturated Liquid	Saturated Vapour	
		100	246.8	17.3	234.5	0.072	0.952	
		200	263.1	38.5	244.5	0.155	0.938	
		300	273.9	52.8	250.9	0.208	0.931	-
		400	282.1	64.0	255.6	0.248	0.927	
		500	288.9	73.4	259.3	0.280	0.924	-
		600	294.8	81.5	262.4	0.308	0.922	-
		700	299.9	88.8	265.1	0.332	0.920	-
		800	304.5	95.5	267.3	0.354	0.918	-
		900	308.7	101.6	269.3	0.374	0.917	-
		1000	312.6	107.4	271.0	0.392	0.916	-
		1200	319.5	117.8	273.9	0.425	0.913	-
		1400	325.6	127.3	276.2	0.453	0.911	-
		1600	331.1	136.0	277.9	0.479	0.908	-
		1800	336.1	144.1	279.2	0.503	0.905	-
		2000	340.7	151.8	280.1	0.525	0.902	
	Fig. 8.2							
(b)	When the refrigerant is at the boundary between a pure liquid and a liquid-vapour mixture considered a saturated liquid and a small expansion will cause it to start evaporating.						ixture, it is	
	(i)	Deduce what a	saturated vapor	ur is.				
			1					
						·····		
	A liquid is said to be saturated when a small compression will cause it to condense							
	(ii) By referring to Fig. 8.1, identify the state (P, Q, R or S) at which the refrigerant is a satur vapour, and another at which it is a saturated liquid.							
			satur	ated vapour:		, saturated li	quid:	[1]
	saturated vapour: P saturated liquid: R [B1]							
(c)	Fig.	8.3 is an incompl	ete table showi	ng the therm	al properties	s of the refrig	gerant at stat	tes P, Q, R
	and	S in the cyclic pro	ocess.		-			

			S	300	273.9	117.8	0.443			
			pressure, isenthalpic	temperature c) [B1]	and enthalpy	correct (isobar	ic, isothermal	and		
(d)	(i)	There The v	e is energy vork done b	input during t	he compression or during this sta	stage of the reader stage can be calcu	efrigeration proc	ess.		
					0 W = m	$\Delta h_{\rm c}$	Ũ			
		where	e <i>m</i> is the i	mass of the sv	stem, and Λh_c is	s the change in	enthalpy during	the		
		comp	pression stag	ge.		s and one ge an	оннору аленно <u></u>			
		If the of wo	If the compressor compresses 3.20 kg of refrigerant in 1.0 second, calculate the rate of work done by the compressor.							
					rate of wo	rk done =		W [2]		
			rate of work done = 3.20 (275 – 250.9) / 1.0 [M1] = 77.1 kW [A1]							
	(ii)	The e	The enthalpy <i>h</i> of a system is given by							
			$h = \frac{U + pV}{r}$							
		where	where U is the internal energy of the system							
			<i>p</i> is the pressure of the system, <i>V</i> is the volume of the system, and							
		-	<i>m</i> is the mass of the system.							
		to dis	The product pV can be understood as the amount of work needed to be done for the system to displace its volume at a particular environmental pressure.							
		1.	State the Fi	rst Law of Therm	nodynamics.					
								[1]		
			the increa absorbed	ise in <i>internal</i> by the system	energy of a syst and the <i>work do</i>	em is equal to ne on the syster	the <u>sum</u> of the . n	heat		

		2.	Show using the First Law of Thermodynamics that for a process taking place at	
			constant pressure, the heat Q absorbed by a system is given by	
			$Q = m \Delta h$	
			where <i>m</i> is the mass of the system, and Δh is the change in enthalpy during this stage.	
			$\Delta U = Q + W$ For isobaric process (constant pressure), $W = -p\Delta V$ $\Delta U = Q - p\Delta V$ $Q = \Delta U + p\Delta V$ mh = U + pV $\Delta(mh) = \Delta U + \Delta(pV) = \Delta U + p\Delta V$ (since <i>p</i> is constant)	
			$m\Delta h = \Delta U + p\Delta V$	
			nence $Q = m \Delta n$	[2]
		3.	Cooling is achieved during the evaporation stage of the cycle as heat is transferred from the surroundings to the refrigerant.	
			For the same system in (i), calculate the rate of heat removal by the refrigeration process.	
			rate of heat removal =	[2]
			rate of heat removal = 3.20 (250.9 – 117.8) / 1.0 s [M1] = 426 kW [A1]	
(e)	The	typica	l operating temperature of a freezer is −18 °C.	
	Expl be u	ain, wi sed to	th reference to the direction of heat transfer, why the refrigeration system cannot cool a freezer.	
				[2]
	in or OR f but f evap	ing the der to for hea the ter poratio	absorb/remove heat from the surroundings at to be transferred from the surroundings to the refrigerant [M1] nperature of the refrigerant is only 0.9 °C (which is higher than -18 °C in the n stage S \rightarrow P)	
	OR temp	but the peratur	e temperature of the refrigerant is 273.9 K which is higher than the required re of 255 K. [A1]	
			[Total	: 20]