

ST ANDREW'S JUNIOR COLLEGE

JC2 PRELIMINARY EXAMINATIONS

HIGHER 2

CANDIDATE NAME				 		 	 	
CLASS	2	1	S					

CHEMISTRY

Paper 3 Free Response

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work that you hand in.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

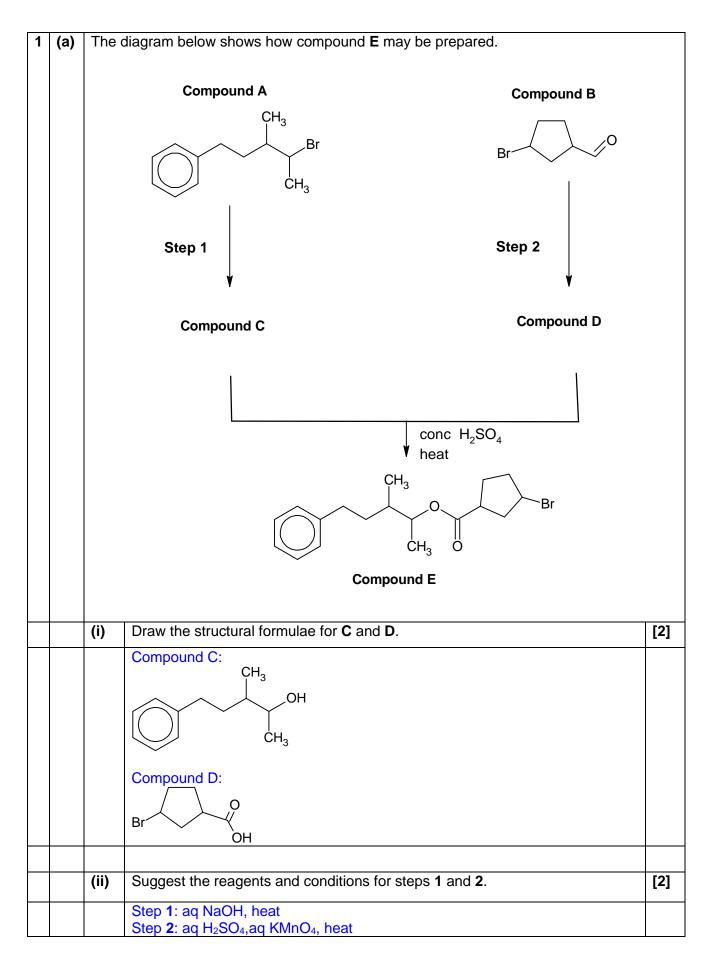
Answer **all** questions in the **spaces provided** on the Question Paper.

If additional space is required, you should use the pages at the end of this booklet.

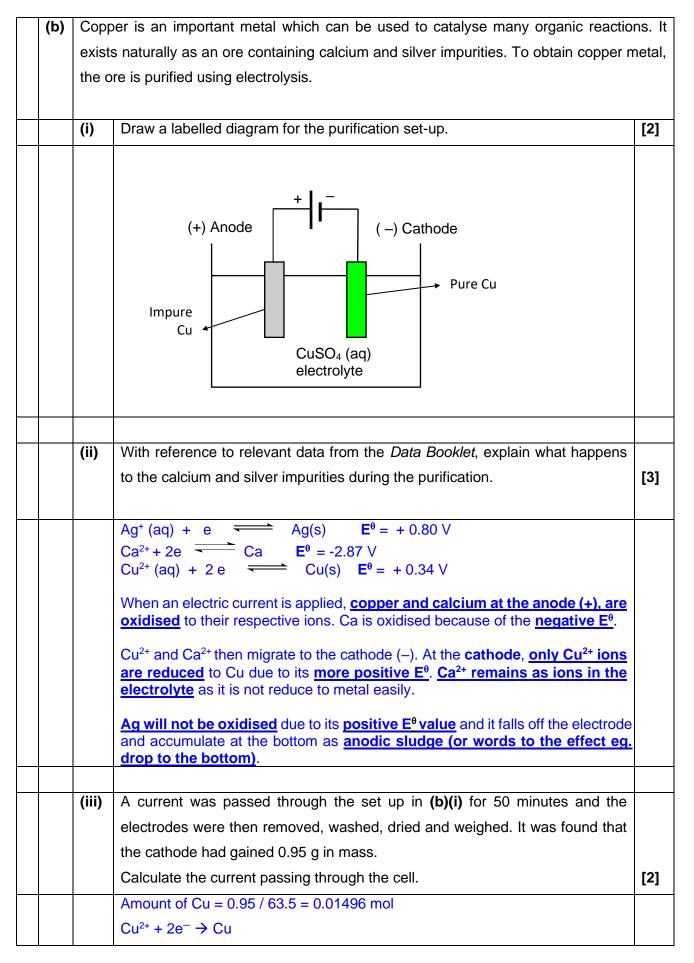
The question number must be clearly shown.

Section A
Answer all questions.
Section B
Answer one question.
A Data Booklet is provided.
The use of an approved scientific calculator is expected, where appropriate.
At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

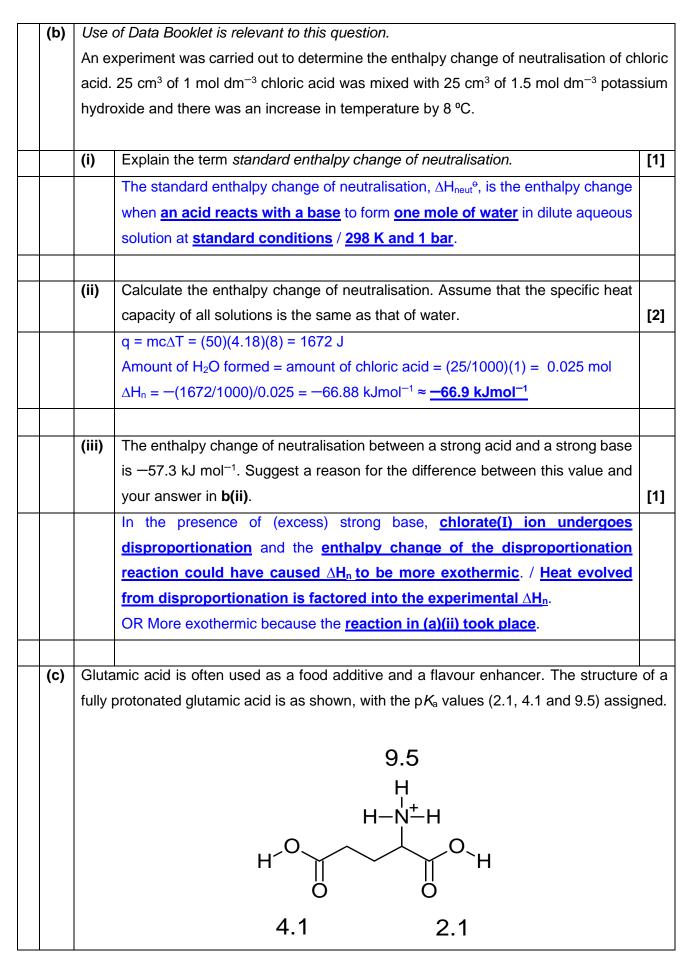

This document consists of **26** printed pages (including this cover page).

For Examiner's Use					
Q1		21			
Q2		19			
Q3		20			
Q4 or Q5		20			
Total		80			

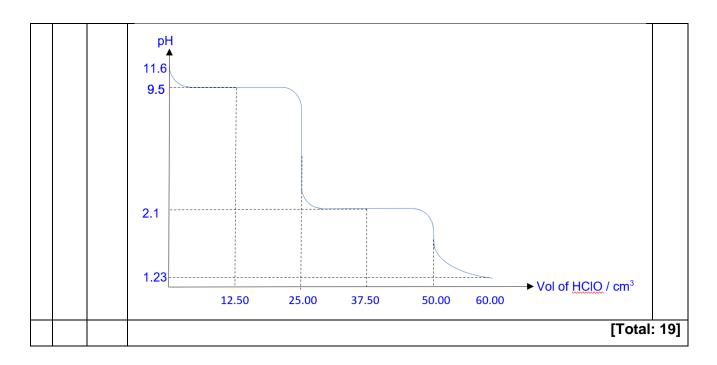

9729/03

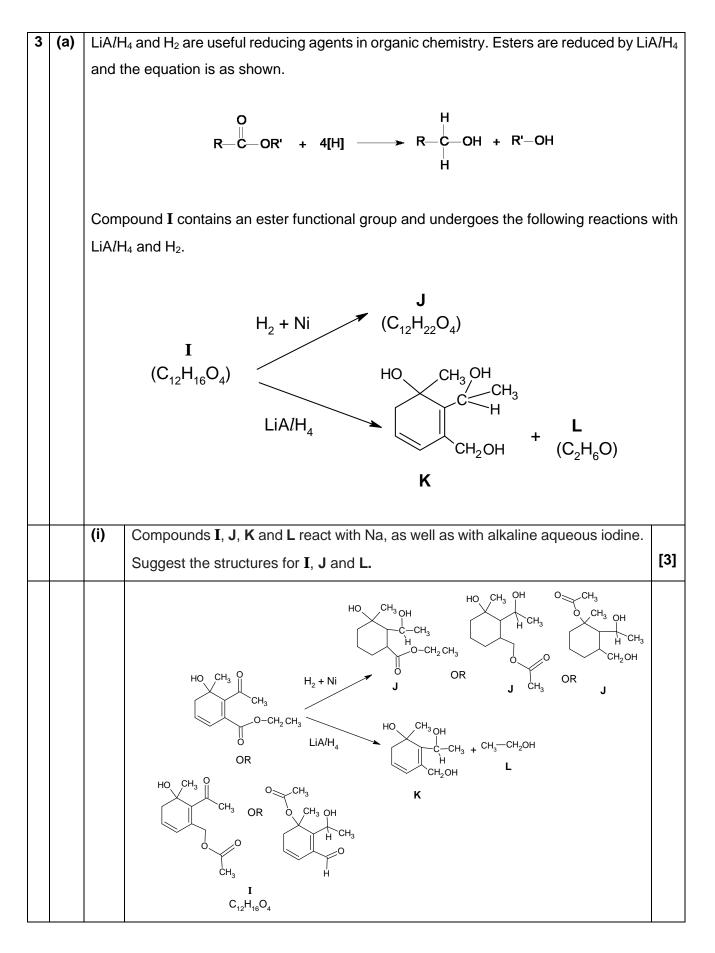
2 hours

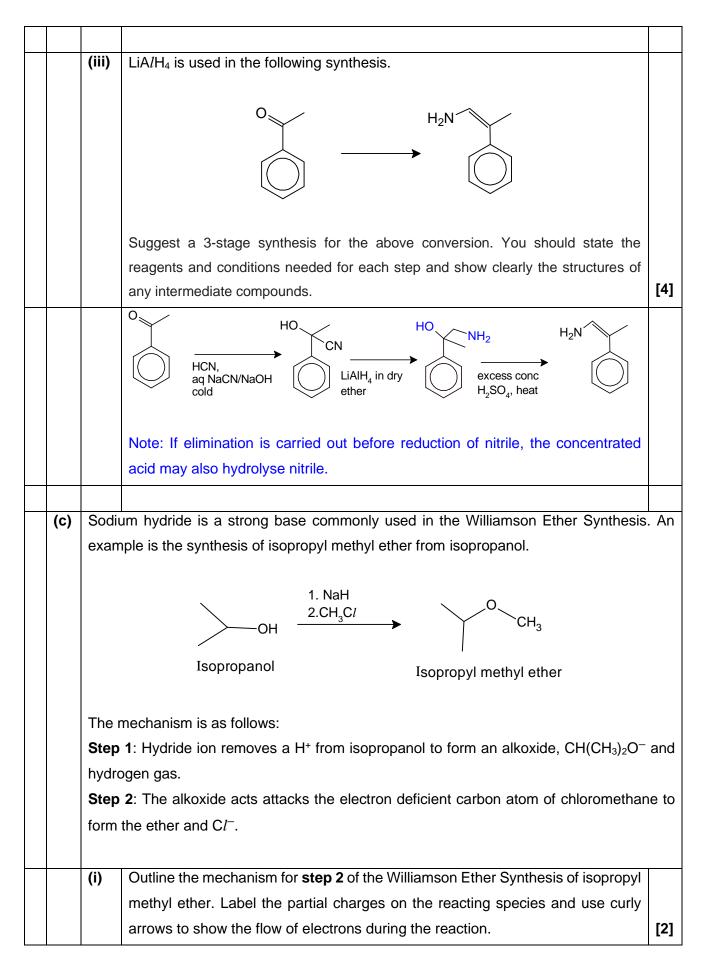
14 September 2022

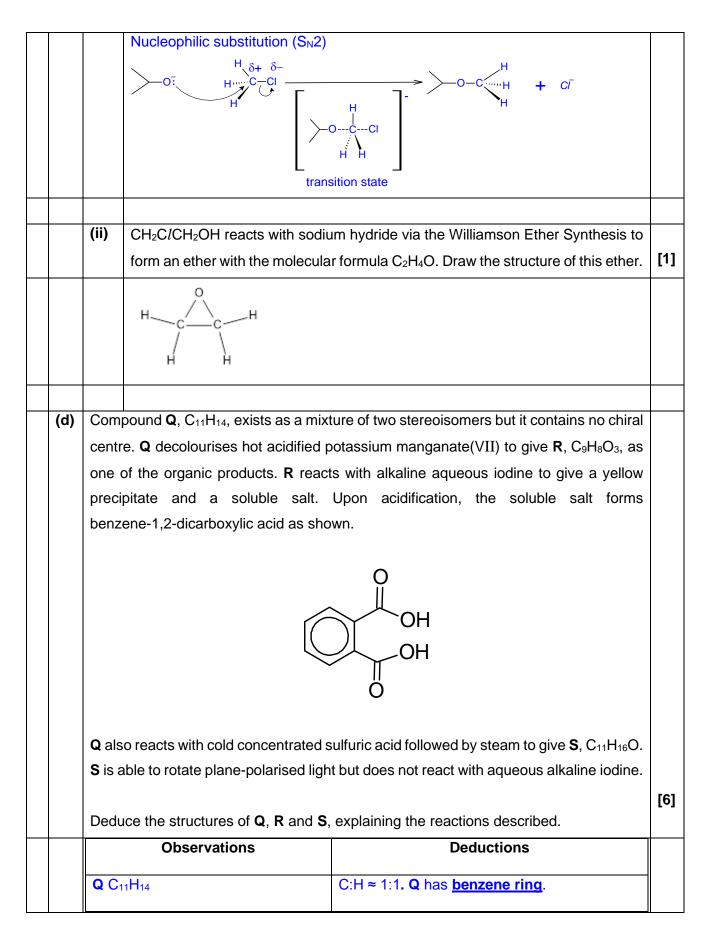


1	or og H SO, K Cr O, hogt	
	or aq H ₂ SO ₄ K ₂ Cr ₂ O ₇ , heat	
(iii)	Draw the structures of the products formed when E is reacted with hot aqueous	
	sodium hydroxide.	[2]
	CH ₃ / O	
	ОН НО С	
	CH ₃	
	(nucleophilic substitution for bromoalkane will occur)	
(iv)	State the type of reaction when C and D react to form E .	[1]
	Condensation / nucleophilic (acyl) substitution	
(v)	Equal amounts of A , F and G are added separately to three test-tubes, which	
	each contains equal concentration of ethanolic silver nitrate. The test-tubes are	
	placed in a hot water bath. No precipitate is formed in one of the test-tubes. For	
	the other two test-tubes, precipitates are formed at different rates.	
	Explain these observations.	
	ĊH ₃ СH ₃	
	Compound F Compound G	101
<u> </u>		[3]
	Compounds A and F undergo nucleophilic substitution with ethanolic AgNO ₃ which releases halide ion to form a ppt with Ag⁺ .	
	which releases hande for to form a ppt with Ag .	
	<u>C−I bond in F is weaker than C−Br bond in A</u> as <u>I is larger atom</u> than Br	
	and has less effective orbital overlap with C. Thus I^- is released faster to	
	form ppt, followed by Br ⁻ .	
	Lone pair of electrons on the C <i>l</i> atom delocalise into the π bond / C=C,	
	resulting in C–C <i>l</i> having partial double bond character, hence the bond	
	does not break easily and no ppt is formed for compound G.	

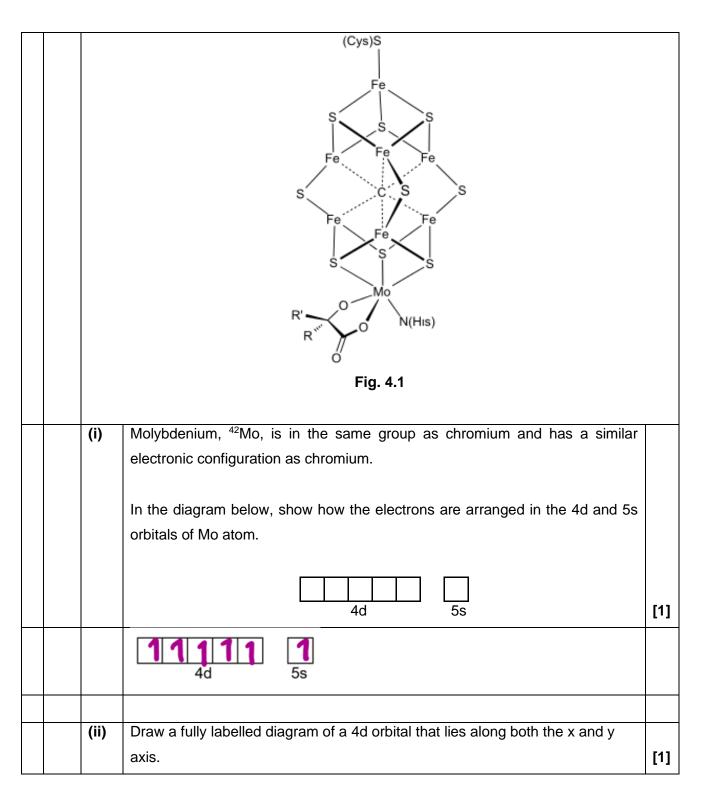

		Amount of $e^- = 2 \times 0.01496 = 0.02992$ mol	
		Q = It	
		$0.02992 \times 96500 = I(50 \times 60)$	
		I = 0.962 A	
(c)	Calc	l ium phosphate, Ca ₃ (PO ₄) ₂ , is used as a supplement for people who either do no	ot get
		igh calcium from their diet or those who suffer from medical conditions	ike like
	(i)	With the aid of relevant data from the Data Booklet, deduce whether copper(II)	
		phosphate or calcium phosphate will decompose at a lower temperature.	
		Explain your answer.	[2]
		From data booklet, <u>r</u> , Cu ²⁺ = 0.073nm, r , Ca ²⁺ = 0.099nm	
		Cu ²⁺ has higher charge density and therefore, is able to distort / polarise	
		the electron cloud of PO43- to a larger extent. P-O is weakened to a larger	
		extent in $Cu_3(PO_4)_2$ and therefore, need less energy to overcome it. $Cu_3(PO_4)_2$	
		will decompose at lower temperature.	
	(ii)	50 cm ³ of 0.05 mol dm ^{-3} sodium phosphate solution is mixed with 30 cm ³ of	
		0.05 mol dm^{-3} calcium nitrate solution.	
		Determine whether calcium phosphate precipitate is formed.	
		(K_{sp} of calcium phosphate = 2.07 x 10 ⁻³³ mol ⁵ dm ⁻¹⁵)	[2]
		$[PO_4^{3-}]_{mixture} = (0.05 \times 0.05) / 0.08 = 0.03125 \text{ mol } dm^{-3}$	
		$[Ca^{2+}]_{mixture} = (0.03 \times 0.05) / 0.08 = 0.01875 \text{ mol } dm^{-3}$	
		$IP = [Ca^{2+}]^3 [PO_4^{3-}]^2 = (0.01875)^3 \times (0.03125)^2$	
		= <u>6.4373 x 10⁻⁹</u> mol ⁵ dm ⁻¹⁵ > K _{sp}	
		Ca ₃ (PO ₄) ₂ ppt will form.	
		[Tota	l: 21]


(a)	When reacted with excess aqueous potassium hydroxide, HClO is converted into water ar two chloro-containing products, one of which is a chloro-oxo anion.							
	In an experiment, 0.5 mol of chloro-oxo anion was reacted with excess potassium iodide t							
	form a brown solution and chloride ion. It was discovered that the brown solution require							
	3 ma	ples of sodium thiosulfate for complete reaction.						
	(i)	Calculate the number of moles of electrons gained by 1 mole of chloro-oxo anion						
		in the reaction with potassium iodide. Hence, prove that the chloro-oxo anion is						
		C/O ₃ ⁻ .	[3]					
		$I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^{-}$						
		Amount of I_2 formed = $3/2 = 1.5$ mol						
		Amount of I ⁻ reacted = $1.5 \times 2 = 3 \text{ mol}$						
		Chloro-oxo anion : I⁻						
		0.5 : 3						
		1:6						
		Given						
		$2I^- \rightarrow I_2 + 2e^-$						
		Amount of electron gained by 1 mole of chloro-oxo anion = 6						
		Oxidation number of Cl in chloro-oxo anion = $-1 + 6 = +5$						
		Oxoanion = ClO_3^-						
	(ii)	The other chloro-containing product formed a white precipitate with silver nitrate						
		solution.						
		Identify this other chloro-containing product. Write an equation for the reaction						
		between chloric acid and excess potassium hydroxide.	[2]					
		Other product = Cl^{-}						
		Equation: $3HC/O + 3KOH \rightarrow KC/O_3 + 2KCl + 3H_2O$						
		OR $3H^+ + 3ClO^- + 3OH^- \rightarrow ClO_3^- + 2Cl^- + 3H_2O$						

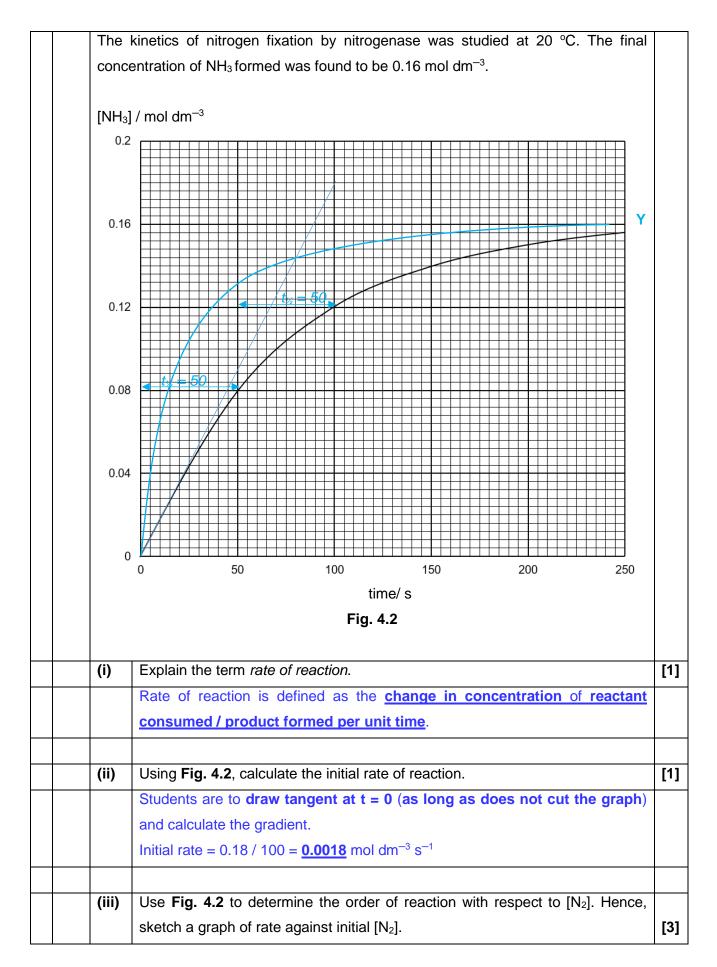

(i)	Explain the assignment of pK_a values to the respective acidic groups.	[3]
	(most acidic) α-COOH > side chain -COOH > -NH ₃ [±]	
	Stability of conjugate base: (most stable) α -COO ⁻ > side chain -COO ⁻ > -	
	NH ₂	
	The -COOH on the side chain is further away from the electron withdrawing	
	-NH ₂ / -NH ₃ ⁺ / N. Hence the negative charge of its conjugate base (-COO ⁻)	
	is dispersed to a smaller extent as compared to the conjugate base of the	
	α -COOH. Hence, the pKa of the side chain -COOH is 4.1 while that of the α -	
	COOH is 2.1 as the α -COO ⁻ is a more stable conjugate base.	
	The <u>lone pair of electrons on $-NH_2$ is localised and <u>will readily accept H⁺</u> and</u>	
	hence, is less stable than $-COO^-$.	
(ii)	Suggest the structural formulae of the major species present in solutions of	
(")		
	glutamic acid with the pH values of 3.0, 6.0, and 10.0.	[3
	pH = 3	
	NH ₃ ⁺	
	pH = 6	
	NH ₃ ⁺	
	pH = 10	
	NH ₂	
(iii)	The structure of compound H is as shown.	$\left \right $
	NH ₂	
	O Na ⁺	
	R II	
	Ö	

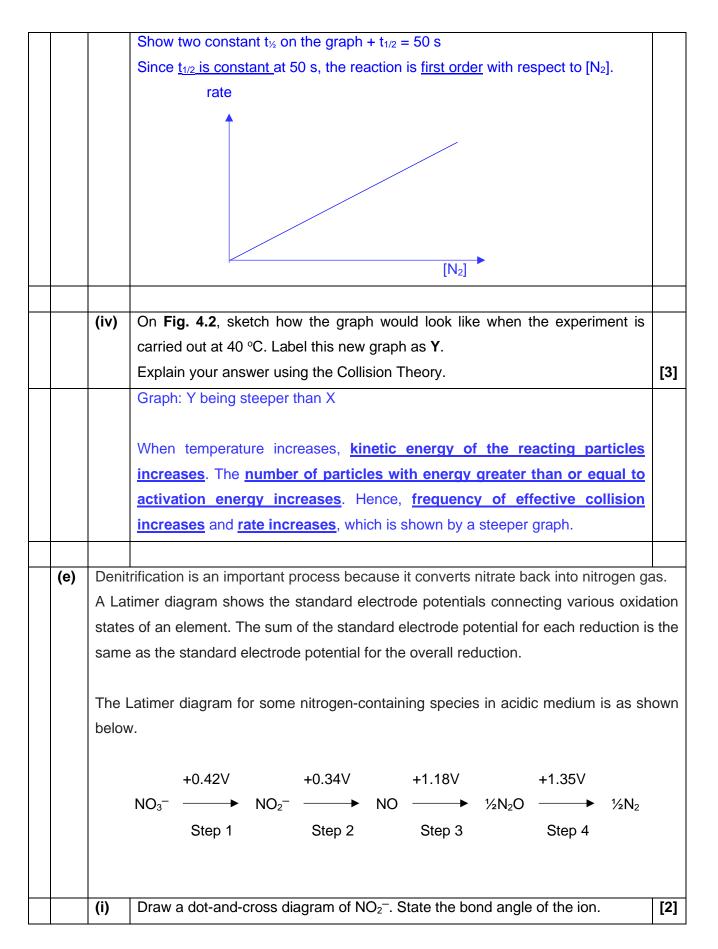

	H has 2 p K_b values.	
	• $pK_{b1} = 4.5$	
	• p <i>K</i> _{b2} = 11.9	
	Calculate the pH of a 0.50 mol dm ⁻³ solution of H . Ignore the effect of pK_{b2} on	
	pH.	[1]
	$[OH^{-}] = \sqrt{(10^{-4.5})(0.50)} = 0.003976 \text{ moldm}^{-3}$	
	pOH = -Ig(0.003976) = 2.40	
	pH = 14 - 2.40 = <u>11.6</u>	
(iv)	Sketch the pH-volume curve that you would expect to obtain when 25 cm ³ of	
	0.50 mol dm ^{-3} compound H is titrated with 60 cm ^{3} of 0.50 mol dm ^{-3} chloric acid.	
	Briefly describe how you have calculated the various key points on the curve.	[3]
	Amount of H ⁺ to completely react with $\mathbf{H} = 0.025 \times 0.5 \times 2 = 0.025$ mol	
	Volume of chloric acid to reach 2^{nd} equivalence point = 0.05 dm ³	
	Amount of H ⁺ to react with $-NH_2 = 0.025 / 2 = 0.0125$ mol	
	Volume of chloric acid needed to reach 1^{st} equivalence point = 0.025 dm ³	
	At 1 st MBC: $pH = pK_a = 14 - 4.5 = 9.5$	
	Volume of chloric acid to reach 1^{st} MBC = 0.025 / 2 = 0.0125 dm ³	
	At 2^{nd} MBC: pH = $pK_a = 14 - 11.9 = 2.1$	
	Volume of chloric acid to reach 2^{nd} MBC = (0.0125 + 0.025) / 2 = 0.0375 dm ³	
	Amount of excess H ⁺ = 10/1000 X 0.50 = 0.005 mol	
	$[H^+] = 0.005 / 0.085 = 0.05882 \text{ mol dm}^{-3}$	
	Final pH = -lg $0.05882 = 1.23$	

_		ction.	[11]
	redu (i)	 Explain why LiA/H₄ is a stronger reducing agent than NaBH₄. <u>Al-H is weaker</u> than B-H due to <u>Al having a larger atomic radius than B</u> and hence, easier production of hydride ions. OR The <u>electronegativity difference between Al and H is greater</u>, causing the <u>H</u> to be more electron-rich in Al-H than in B-H. OR <u>Li* has a stronger polarising power</u> as it has a higher charge density and thus. 	[1]
		Explain why LiA/H ₄ is a stronger reducing agent than NaBH ₄ . <u>Al-H is weaker</u> than B-H due to <u>Al having a larger atomic radius than B</u> and hence, easier production of hydride ions. OR The <u>electronegativity difference between Al and H is greater</u> , causing the <u>H</u> <u>to be more electron-rich in Al-H</u> than in B-H. OR	

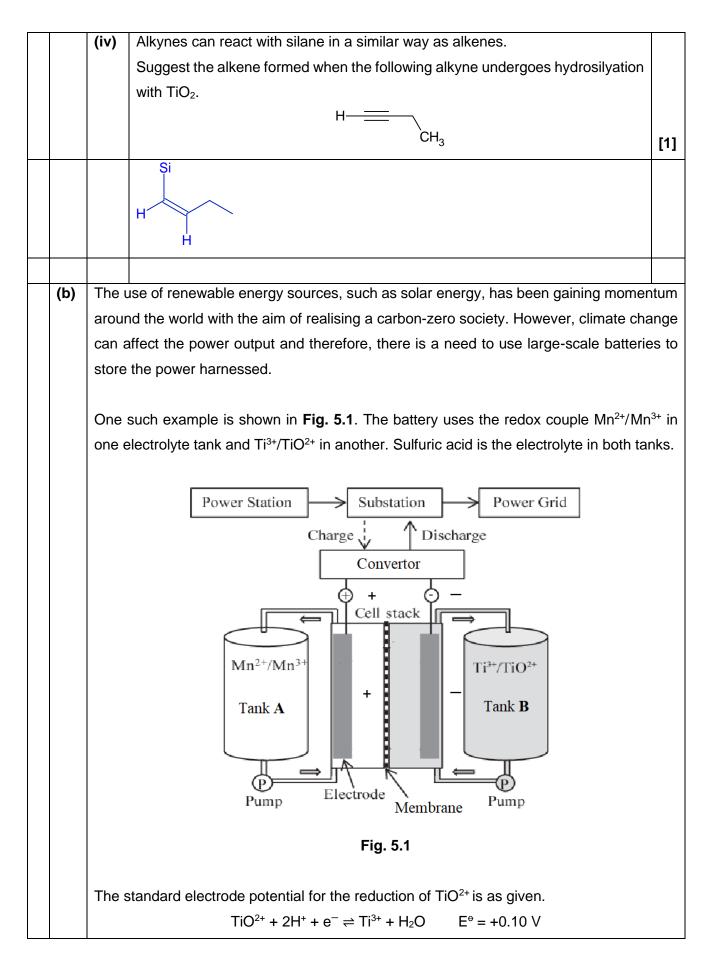


Q has 2 stereoisomers with no	Q is an <u>alkene</u> with <u>cis and trans isomer</u> .
chiral centre	
Q , C ₁₁ H ₁₄ , decolourises hot KMnO ₄	Q is <u>oxidised</u> .
to give R , $C_9H_8O_3$	Q contains <u>alkene</u> (no double awarding)
	and/or <u>a side chain with a benzylic H</u> .
	C:H ≈ 1:1 . R contains a benzene ring . (no
	double awarding for Q and R)
	R is a <u>ketone and/or -COOH (</u> both must be
	present)
R reacts with alkaline I ₂ (aq)	R is <u>oxidised</u> .
	R has <u>CH₃C=O</u> .
Q, C ₁₁ H ₁₄ , reacts with cold H ₂ SO ₄	Q undergoes electrophlic addition to form
followed by steam to give S ,	<u>alcohol</u> , S.
C ₁₁ H ₁₆ O.	Q has an <u>alkene</u> or <u>1 C=C</u> . (no double
	awarding)
S rotates plane-polarised light but	S contains chiral C/centre
does not react with aqueous	S does not contain CH₃-CH(OH)-
alkaline iodine	
Q CH_3	CH ₃ CH ₃ CH ₃
$\begin{array}{c} R & S \\ \bigcirc & \bigcirc^{CO_2H} \\ & \bigcirc & \bigcirc^{CH_3} \end{array}$	^Н ³ СН ₃ — С — С — С — С – С Н ₂ С Н ₃ — О Н
	[Total:


Section B


Answer **one** question from this section.

4	Nitro	ogen is a critical nutrient for the survival of all living organisms, as it is a necessary compo	nent					
	of m	any biomolecules, such as proteins. Although nitrogen is very abundant in the atmosph	ere,					
	it ne	eds to be converted into ammonia for it to be available to primary producers, such as pla	ants.					
	This process is called nitrogen fixation. Only a select group of bacteria can carry out the							
	ener	getically demanding process. The equation for nitrogen fixation is as shown.						
		$N_2 + 8H^+ + 8e^- \rightarrow 2NH_3 + H_2$						
	(a)	By using appropriate data from the Data Booklet, explain why nitrogen fixation is an						
		energetically demanding process.	[1]					
		$BE(N\equiv N) = 944$ kJ mol ⁻¹ . The N \equiv N is strong / requires a lot of energy to break.						
		Examiners' comments:						
		• Quite well answered. Some students however did not comment how the bond						
		energy quoted was a large value that needed a lot of energy to overcome to						
		answer the question. A handful either did not quote or quoted the wrong data						
		from the data booklet and the N_2 is N=N instead of triple bond. There were						
		also students who went to calculate ΔH of the reaction based on bond energy						
		not realising that an exothermic reaction does not answer the question.						
	(b)	Bacteria that carry out nitrogen fixation have an enzyme called nitrogenase. Nitroger	nase					
		contains an iron-sulfur-molybdenium metal cluster, as shown in Fig. 4.1. Histidine (His)	and					
		cysteine (Cys) are two important amino acids present in the active site of nitrogenase.						


		y z 4d _{x2-y2}	
	(!!!)		[4]
	(iii)	State the shape about Mo in Fig. 4.1 . Octahedral	[1]
	(iv)	The structure of cysteine (Cys) amino acid is given below.	
		HS OH NH ₂	
		Cys	
		Draw the stereoisomers of Cys.	[1]
		HOOC H H H2N CH2SH HOOC H HCC* H H2N H2 H H2N H2 H2 H H2N H2 H H2 H	
(2)	Nitur	annon are departivated in the processor of everyon, as everyon and eltrement are	
(c)		genase are deactivated in the presence of oxygen, as oxygen and nitrogen can bete for binding to iron in the active site of the enzyme.	
		ain how oxygen is able to interact with nitrogenase in a similar manner as	[1]
		oxygen and nitrogen have at least one lone pair of electrons that can be ted to iron via dative bond .	
(d)	Nitro	genase is stable when the temperature is between 20 °C to 40 °C.	

	$\begin{bmatrix} \vdots & \vdots & X \\ \vdots & \vdots & X \\ 115^{\circ} \text{ (bond angle ranging from 110 to 119^{\circ})} \end{bmatrix}^{-1}$	
(ii)	Explain how the Latimer diagram shows that NO is an intermediate in the denitrification process. It is produced in step 2 and used in step 3.	[1]
(iii)	Write a half equation for the reduction of NO ₃ ⁻ to N ₂ in acidic medium. $2NO_3^- + 12H^+ + 10e^- \rightarrow N_2 + 6H_2O$	[1]
(iv)	Use the Latimer diagram to calculate the standard electrode potential for the reduction of NO ₃ ⁻ to N ₂ . Hence, calculate the standard Gibbs free energy change, ΔG° , per mole of N ₂ formed.	[2]
	E^{e}_{cell} = + 0.42 + 0.34 + 1.18 + 1.35 = + <u>3.29</u> V ΔG ^e = - 10 × 96500 × 3.29 = - 3174850 J mol ⁻¹ ≈ <u>- 3170 kJ mol⁻¹</u> (3sf) [Total:	: 20]

5	This	s question is about the chemistry of titanium and its ions.						
	(a)) Titanium (II) oxide, TiO, and titanium (IV) dioxide, TiO ₂ , are common sources of t						
		ions with different oxidation states.						
				compound	melting point / °C	7		
				TiO	1750	-		
				TiO ₂	1843			
		(i) State the electronic configuration of a Ti ²⁺ ion.					[1]	
			1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3c					
		(11)						
		(ii) Explain, in terms of structure and bonding, the difference in melting between TiO and TiO ₂ .					[2]	
		Both have giant ionic lattice structure with strong ionic bonds be					[-]	
	cations and anions. Lattice Energy $\propto \left \frac{q^+q^-}{r_++r}\right $							
		Since <u>Ti⁴⁺ has a higher charge</u> and smaller cationic radius than Ti ²⁺ and						
		<u>E of TiO₂ is more</u>						
	exothermic. Hence, more energy is required to overcome the stron bonds in TiO ₂ and it has a higher melting point.							
			bonds in 1102 and	d it has a higher me	eiting point.			
		(iii)	TiO ₂ is a catalys	t used in the anti	-Markvonikov hydro:	silyation of gaseous		
			alkenes with gase	ous silane, SiH.				
		R + SiH $\xrightarrow{\text{TiO}_2}$ R + Si						
			Outline the mode	of action of TiO_2 ca	talyst in this reaction		[2]	
			TiO ₂ is a heterogen	neous catalyst. The	alkene and silane ar	e <u>adsorbed</u> onto the		
						esides increasing the		
						weakened, lowering		
					on to take place, whe di <u>desorb</u> from the TiC	ere the C-H and C-Si		

	(i)	Write an equation to represent the discharging of this battery.	[1
		$\underline{\text{Ti}^{3+} + \text{Mn}^{3+} + \text{H}_2\text{O}} \rightarrow \text{Ti}\text{O}^{2+} + 2\text{H}^+ + \text{Mn}^{2+}}$	
	(ii)	Use the <i>Data Booklet</i> to calculate the $E^{\text{P}_{\text{cell}}}$ when the battery is discharged.	
		Hence, calculate the standard Gibbs free energy change, ΔG^{\ominus} , per mole of Mn ³⁺	
		used in the discharging process.	[2
		$E^{\text{b}}_{\text{cell}} = (+1.54) - (+0.10) = + \underline{1.44} \text{ V}$	
		$\Delta G^{\ominus} = -nFE^{\ominus} = -(1)(96500)(+1.44)$	
		$= -138960 \text{ J mol}^{-1}$	
		≈ <u>- 139 kJ mol⁻¹</u>	
	(iii)	Suggest and explain the effect on E_{cell} if an electrolyte of lower pH was used.	[2
		$TiO^{2+} + 2H^+ + e^- \rightleftharpoons Ti^{3+} + H_2O$	
		At lower pH, [H*] is high and would cause the position of equilibrium for the	
		above to shift right. [
		$E(TiO^{2+}/Ti^{3+})$ would become more positive, causing <u>E_{cell} to become less</u>	
		positive.	
		Ecf from (ii) for E _{cell}	
	(iv)	Sulfuric acid, which is a source of H ⁺ , will flow through the exchange membrane	
(,	()	as the battery discharges.	
		Suggest the direction of flow of H ⁺ through the membrane. Explain your answer.	[2
		H^+ flow from Tank B towards Tank A to maintain electrical neutrality as H^+ is	-
		being produced in Tank B.	
	(v)	Suggest an advantage of using <i>porous</i> carbon electrodes.	[1
		It increases the surface area for exchange of electrons to occur faster.	
(c)	(i)	With reference to the table below, suggest the colour change in Tank B when	
\ = <i>I</i>		the battery is charging.	
		Species Colour	
		Ti ³⁺ (aq) violet	
		TiO ²⁺ (aq) colourless	[1
	Î.		1.

(i	ii)	Explain what is meant by the term <i>transition element</i> .	[1]
		A transition element is a <u>d - block element</u> which forms <u>one or more stable</u>	+
		ions with partially filled d subshells / d orbitals.	
(i	iii)	Explain why Ti ³⁺ (aq) ions are coloured, but TiO ²⁺ (aq) ions are not.	[3]
		In the presence of water ligands, the partially filled 3d orbitals in Ti ³⁺ split	-
		into two groups with a small energy gap between them. When an electron	
		from the lower energy d orbital absorbs energy from visible light range, it is	
		excited/promoted/transited to a higher energy d orbital. Energy that is not	
		absorbed is reflected, the reflected light is violet.	
		TiO ²⁺ has <u>no 3d electrons</u> for d-d transition.	
	<u></u>	Two separate solutions of Ti^{3+} and Al^{3+} are acidic.	<u> </u>
	iv)		
		Using relevant data from the Data Booklet, predict which solution of equal	Г 4
		concentration, Ti ³⁺ or A <i>l</i> ³⁺ , will give a lower pH.	[1
		<u>Al³⁺: 0.050 nm; Ti³⁺: 0.067 nm</u>	
		A solution of $\underline{Al^{3+}}$ is more acidic and has a lower pH. [1]	
		(Explanation for students during review):	
		$A^{\beta^{+}}$ has a smaller ionic radius and higher charge density. $A^{\beta^{+}}$ has a higher	
		polarising power and is able to polarise/distort the electron cloud of coordinated	
		H_2O to a larger extent, weakening the O-H bond more to form more H ⁺ .	
		[Total:	: 20