Measurements

Base Quantities and Units

Mass	Length	Time	Current	Temperature	Amount of Substance	Luminous Intensity
kg	m	S	A	K	mol	cd

Homogeneity of Physical Equations

• Expressions separated by "+", "-" and "=" have the same units

$s = ut + \frac{1}{2}at^2$	$F.s = \frac{1}{2}mv^2$
[s] = [ut] = [at ²]	$[Fs] = [mv^2]$
Half is a numerical constant with no units	$[F] = \frac{[m][v][v]}{[s]}$
But not all constants are unitless. $g = 9.81 \text{ m s}^{-2}$ is	$[F] = \frac{kg.ms^{-1}.ms^{-1}}{m} = kg m s^{-2}$
	kg m s ⁻² is the SI base unit of force while N is the SI unit.

Prefixes

pico	nano	micro	milli	centi	deci	kilo	mega	giga	terra
р	n	μ	m	С	d	k	М	G	Т
10 ⁻¹²	10 ⁻⁹	10 ⁻⁶	10 ⁻³	10 ⁻²	10 ⁻¹	10 ³	10 ⁶	10 ⁹	10 ¹²

Uncertainty and Derived Uncertainty

Addition and Subtraction	Multiplication and Division		
• $c = ma \pm nb$ (m and n are constants) $\circ \Delta c = m\Delta a + n\Delta b$, ALSO: $\circ \Delta a = \frac{1}{m}\Delta c + \frac{n}{m}\Delta b^*$, and $\circ \Delta b = \frac{1}{n}\Delta a + \frac{m}{n}\Delta c^*$	• $C = \frac{ma^{x}b^{y}}{d^{z}}$ (<i>m</i> , <i>x</i> , <i>y</i> and <i>z</i> are constants) $\circ \frac{\Delta C}{c} = x\frac{\Delta a}{a} + y\frac{\Delta b}{b} + z\frac{\Delta d}{d}$		
Noto			

Note:

- *a, b, c* and *d* are independent from one another.
 - 1. If not, use the maximum and minimum value,

$$\Delta c = \frac{c_{max} - c_{min}}{2}$$

• *Make the derived quantity the subject first before applying the rule

Errors / Uncertainties

Absolute	Fractional	Percentage
⊿c	$\frac{\Delta c}{c}$	$\frac{\Delta c}{c} \times 100\%$

Random Error

A random error is an error which gives a <u>scatter</u> of readings about an <u>average value</u>. It has an <u>equal chance</u> of being <u>positive or negative</u> and can be <u>reduced by</u> <u>averaging</u>.

Systematic Error

A systematic error is a <u>constant deviation</u> of readings <u>from the true value</u> in <u>one</u> <u>direction</u>. <u>All measurements will be too high or too low by the same amount</u>. It can be <u>reduced by correct laboratory practice</u>.

Precision (of an instrument):	a term used to describe the level of uncertainty in an instrument's scale. High precision instruments have small scale divisions.
Accuracy (of an instrument):	is the closeness of a reading on an instrument to the true value of the quantity being measured. An accurate instrument will give readings close to the true values.
Precision (of a set of readings):	is the degree of closeness of the readings <u>with one another</u> . It is associated with <u>small random error</u> .
Accuracy (of a set of readings):	is the degree of closeness of the <u>average value</u> of the readings to the <u>true value</u> . It is associated with <u>small systematic error</u> .

Vectors

- Have directions and magnitudes
- Therefore, when we say there is a change in a vector, it could mean
 - **1.** Magnitude change only; or
 - 2. Direction change only; or
 - **3.** Both magnitude and direction change
- "Change" in a quantity means how *different* is the final quantity from the initial quantity. Therefore in mathematical equation, for example, a change in velocity means

$\Delta V = V_{final} - V_{initial}$

- 1. The equation above is a vector equation. Refer to above bullet points on what does a "change" means. See below on evaluating a change in vector.
- 2. To evaluate a vector equation, drawing the vectors and use geometry to determine both magnitude and direction of the final vector.

Vectors Manipulation

Vector A	Vector B	C = A + B
×		C = A - B
A	B	C - B A