	Solution
P2 Q1	Let P_n be the statement $2(7^n) + 3(5^n) - 5$ is divisible by 24 for all $n \in \mathbb{Z}^+$.
	When $n = 1$, $2(7) + 3(5) - 5 = 24 = 24(1)$.
	$\therefore P_1$ is true.
	Assume that P_k is true for some $k \in \mathbb{Z}^+$, i.e. $2(7^k) + 3(5^k) - 5 = 24a$ for some integer <i>a</i> .
	We want to prove that P_{k+1} is true, i.e. $2(7^{k+1}) + 3(5^{k+1}) - 5 = 24b$ for some integer b.
	$2(7^{k+1}) + 3(5^{k+1}) - 5 = 14(7^{k}) + 15(5^{k}) - 5$ = 12(7 ^k) + 12(5 ^k) + 2(7 ^k) + 3(5 ^k) - 5 = 12[(7 ^k) + (5 ^k)] + 24a.
	Since 7^{k} and 5^{k} are both odd, $(7^{k}) + (5^{k})$ is even. Thus, $(7^{k}) + (5^{k}) = 2c$ for some integer c . Therefore, $12[(7^{k}) + (5^{k})] + 24a = 12(2c) + 24a$ $= 24(c+a)$ where $c + a \in \mathbb{Z}$.
	$\therefore P_k \Rightarrow P_{k+1}.$ Since P_1 is true, and $P_k \Rightarrow P_{k+1}$, by mathematical induction, P_n is true for all positive integers <i>n</i> .

Section A: Pure Mathematics [50 marks]

T	Method 1
	$x = \sin t \implies \frac{dx}{dt} = \cos t = \sqrt{1 - x^2} \implies \frac{d^2 x}{dt^2} = -\sin t = -x$
	Then,
	$\frac{d^2 y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \times \frac{dx}{dt} \right) \left[\text{Note: } \frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{dy}{dx} \right) \times \frac{dx}{dt} \right]$
	$= \left[\frac{d}{dx}\left(\frac{dy}{dx}\right) \times \frac{dx}{dt}\right] \times \frac{dx}{dt} + \left(\frac{dy}{dx}\right) \times \left(\frac{d^2x}{dt^2}\right) (by \text{ product rule})$
	$= \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 \left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right) + \left(-x\right)\frac{\mathrm{d}y}{\mathrm{d}x}$
	$= \left(\sqrt{1-x^2}\right)^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x}$
	$= \left(1 - x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx}$
	Substituting into the original differential equation:
	$(1-x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} + 4y = 0 \implies \frac{d^2y}{dt^2} + 4y = 0 \text{ (shown)}$
	Method 2
	$x = \sin t \Rightarrow t = \sin^{-1} x \Rightarrow \frac{dt}{dx} = \frac{1}{\sqrt{1 - x^2}} \Rightarrow \frac{dx}{dt} = \sqrt{1 - x^2}$
	Thus, $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} = \sqrt{1 - x^2} \frac{dy}{dx}$ (1)
	$\frac{d^2 y}{dt^2} = \frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dx} \left(\frac{dy}{dx} \right) \frac{dx}{dt}$
	$= \frac{\mathrm{d}}{\mathrm{d}x} \left(\sqrt{1 - x^2} \frac{\mathrm{d}y}{\mathrm{d}x} \right) \times \sqrt{1 - x^2}$
	$= \left(\sqrt{1-x^2}\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - \frac{x}{\sqrt{1-x^2}}\frac{\mathrm{d}y}{\mathrm{d}x}\right)\sqrt{1-x^2}$
	$= \left(1 - x^2\right) \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x \frac{\mathrm{d}y}{\mathrm{d}x} \tag{2}$
	Substituting (1) and (2) into the DE:
	$(1-x^{2})\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + 4y = 0$
	$\frac{d^2 y}{dt^2} + 4y = 0 \text{ (shown)}$
	Method 2
	$x = \sin t \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \cos t \Rightarrow \frac{\mathrm{d}t}{\mathrm{d}x} = \sec t$
	Thus, $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \sec t \frac{dy}{dt}$ (1)

$$\frac{d^2 y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dt} \left(\frac{dy}{dx} \right) \frac{dt}{dx}$$

$$= \frac{d}{dt} \left(\sec t \frac{dy}{dt} \right) \times \sec t$$

$$= \left(\sec t \frac{d^2 y}{dt^2} + \sec t \tan t \frac{dy}{dt} \right) \sec t$$

$$= \sec^2 t \frac{d^2 y}{dt^2} + \sec^2 t \tan t \frac{dy}{dt} \qquad (2)$$
Substituting (1) and (2) into the DE:
$$\left(1 - \sin^2 t \right) \left(\sec^2 t \frac{d^2 y}{dt^2} + \sec^2 t \tan t \frac{dy}{dt} \right) - \sin t \sec t \frac{dy}{dt} + 4y = 0$$

$$\cos^2 t \left(\sec^2 t \frac{d^2 y}{dt^2} + \sec^2 t \tan t \frac{dy}{dt} \right) - \frac{\sin t}{\cos t} \cdot \frac{dy}{dt} + 4y = 0$$

$$\frac{d^2 y}{dt^2} + \tan t \frac{dy}{dt} - \tan t \frac{dy}{dt} + 4y = 0$$

$$\frac{d^2 y}{dt^2} + 4y = 0 \text{ (shown)}$$
Auxiliary equation for reduced DE is $m^2 + 4 = 0 \Rightarrow m = \pm 2i$
General solution is
$$y = e^{(0)t} \left(A \cos 2t + B \sin 2t \right)$$

$$= A \left(1 - 2x^2 \right) + B \left(2x\sqrt{1 - x^2} \right) \text{ [Since } x = \sin t \text{ and } \sqrt{1 - x^2} = \cos t \text{]}$$

$$= A \left(1 - 2x^2 \right) + Cx\sqrt{1 - x^2}, \text{ where } C = 2B \text{ and } A \text{ are arbitrary constants.}$$

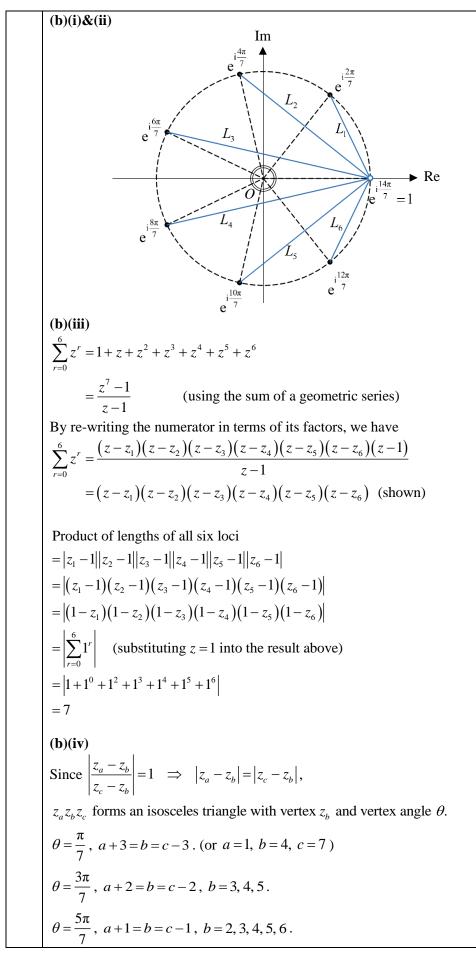
2024 H2 FM 9649 Prelim Paper 2 (ACJC_EJC_NJC_RVHS)

Solution

$$\frac{P_{2}^{2}}{Q_{3}} (a) \det(\mathbf{M} - \lambda \mathbf{I}) = \begin{vmatrix} \mathbf{I} - \lambda & \mathbf{I} \\ \mathbf{3} & -\mathbf{I} - \lambda \end{vmatrix} = \lambda^{2} - \mathbf{I} - \mathbf{3} = (\lambda + 2)(\lambda - 2)$$
so the eigenvalues of **M** are -2 and 2.
Let $\lambda_{1} = -2$, $\begin{pmatrix} \mathbf{3} & \mathbf{I} & \mathbf{I} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & -\mathbf{1} \\ \mathbf{1} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$. Corresponding eigenvector $\mathbf{e}_{1} = \begin{pmatrix} \mathbf{1} \\ -3 \end{pmatrix}$
Let $\lambda_{2} = 2$, $\begin{pmatrix} -\mathbf{I} & \mathbf{I} \\ \mathbf{3} & -3 \end{pmatrix} \begin{pmatrix} \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{e}_{1} \cdot \mathbf{i} \\ \mathbf{e}_{1} \end{pmatrix} \begin{pmatrix} \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}$. Corresponding eigenvectors are $\begin{pmatrix} \mathbf{1} \\ -3 \end{pmatrix}$ and $\begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix}$.
So the eigenvalues of **M** are -2 and 2 and their corresponding eigenvectors are $\begin{pmatrix} \mathbf{1} \\ -3 \end{pmatrix}$ and $\begin{pmatrix} \mathbf{1} \\ \mathbf{1} \end{pmatrix}$.
(b) Hence, we have $\mathbf{M} = \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & -1 \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & -1 \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ -3 & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{0} & 2 \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} \mathbf{1} & \mathbf{1} \end{pmatrix} \begin{pmatrix} -2 & \mathbf{0} \\ \mathbf{1} \end{pmatrix} \begin{pmatrix} -2$

	Solution
P2 Q4	(a) By the reflective property of the parabola, any incoming light ray parallel to its axis will reflect off the parabola and pass through the focus of the parabola. If this is also a focus of the ellipse, then by the reflective property of the ellipse, the light ray will reflect off the ellipse and pass through the other focus of the ellipse, which is the point S . Hence, incoming light rays which are parallel to the axis will all reflect off both mirrors and pass through point S .
	(b) $y^2 = 37.6x = 4(9.4)x$. Hence the focus <i>F</i> of the parabola is at $(9.4,0)$.
	(c) The centre K of C_2 is at the midpoint of SF, which is (4.6,0).
	The semimajor axis is $a = 9.6 - 4.6 = 5$
	The distance of the foci from the centre, $c = 9.4 - 4.6 = 4.8$.
	Since $c^2 = a^2 - b^2$, we have
	$b = \sqrt{a^2 - c^2} = \sqrt{5^2 - 4.8^2} = 1.4$
	Hence, the equation of the ellipse C_2 is $\frac{(x-4.6)^2}{5^2} + \frac{y^2}{1.4^2} = 1$.
	(d) Consider a light ray travelling along the line $y = 4.2$.
	When it touches the parabola, $y^2 = 37.6x \Rightarrow x = \frac{4.2^2}{37.6} = 0.469149$.
	Hence, the point where it touches the parabola is $(0.469149, 4.2)$.
	Since it reflects off the parabola and passes through its focus at $(9.4,0)$, the reflected light ray has
	equation
	$\frac{y}{x-9.4} = \frac{4.2}{0.469149 - 9.4}$
	y = -0.470280(x - 9.4)
	Substitute this into the equation of the ellipse:
	$\frac{\left(x-4.6\right)^2}{5^2} + \frac{0.470280^2\left(x-9.4\right)^2}{1.4^2} = 1$
	$0.15284x^2 - 2.48936x + 9.81680 = 0$
	Using GC, $x = 9.5898$ or $x = 6.6977$ (reject since $x > 9.4$).
	Then $y = -0.470280(x - 9.4) = -0.0893$.
	By symmetry, the light ray travelling along the line $y = -4.2$ will reflect off the parabola and intersect the ellipse at $y = 0.0893$.
	Hence, the range of y-coordinates of the ellipse must include $-0.0893 \le y \le 0.0893$.

Solution P2 (a)(i) $z_k = e^{i\frac{2k\pi}{n}}$, where k = 1, 2, ..., n. Q5 (a)(ii) Method 1 Note that $z_{n-k} = e^{i\frac{2(n-k)\pi}{n}} = e^{i2\pi}e^{i\frac{-2k\pi}{n}} = e^{i\frac{-2k\pi}{n}} = z_k^*$, so $z_k z_{n-k} = |z_k|^2 = 1$. If *n* is odd, $\frac{n-1}{2} \in \mathbb{Z}^+$. Then for all $m \in \mathbb{Z}^+$, $1 \le m \le \frac{n-1}{2}$, $\frac{2}{1+z} + \frac{2}{1+z} = 2 \left| \frac{1+z_m + 1+z_{n-m}}{(1+z_m)(1+z_m)} \right|$ $= 2 \left| \frac{2 + z_m + z_{n-m}}{1 + z_m + z_{n-m} + (z_{m-m})(z_{n-m})} \right|$ $= 2 \left| \frac{2 + z_m + z_{n-m}}{2 + z_m + z_{n-m}} \right|$ So $\frac{2}{1+z} + \dots + \frac{2}{1+z} + \frac{2}{1+z} = \left(\frac{n-1}{2}\right)(2) + \frac{2}{1+z} = n-1 + \frac{2}{1+1} = n$ $\frac{\text{Method 2}}{\frac{2}{1+z_1} + \frac{2}{1+z_2} + \frac{2}{1+z_3} + \dots + \frac{2}{1+z_{n-1}} + \frac{2}{1+z_n} = \sum_{k=1}^n \frac{2}{1+z_k} = \sum_{k=1}^n \frac{2}{1+e^{\frac{i^{2k\pi}}{n}}}$ $=\sum_{k=1}^{n}\frac{2e^{-i\frac{k\pi}{n}}}{e^{-i\frac{k\pi}{n}}+e^{i\frac{k\pi}{n}}}=\sum_{k=1}^{n}\frac{2\left[\cos\left(\frac{k\pi}{n}\right)-i\sin\left(\frac{k\pi}{n}\right)\right]}{2\cos\left(\frac{k\pi}{n}\right)}=\sum_{k=1}^{n}\left[1-i\tan\left(\frac{k\pi}{n}\right)\right]$ $= n - i \left[\underbrace{\tan\left(\frac{\pi}{n}\right) + \tan\left(\frac{2\pi}{n}\right) + \dots + \tan\left(\frac{(n-2)\pi}{n}\right) + \tan\left(\frac{(n-1)\pi}{n}\right)}_{\text{even number of terms since } n \text{ is odd}} + \tan\left(\frac{n\pi}{n}\right) \right]$ $= n - i \left[\tan\left(\frac{\pi}{n}\right) + \tan\left(\frac{(n-1)\pi}{n}\right) + \tan\left(\frac{2\pi}{n}\right) + \tan\left(\frac{(n-2)\pi}{n}\right) + \dots + \tan\pi \right]$ $= n - i \left[\tan\left(\frac{\pi}{n}\right) - \tan\left(\frac{\pi}{n}\right) + \tan\left(\frac{2\pi}{n}\right) - \tan\left(\frac{2\pi}{n}\right) + \dots + 0 \right]$ = n - i(0 + 0 + ... + 0)= n.



	Solution												
P2 Q6	(a) Let the median of the differences in reaction times be m . Test $H_0: m = 0$ against $H_1: m \neq 0$ at 2% level of significance												
	Participant	1	2	3	4	5	6	7	8	9	10	, ,	
	Condition A	21	24	20	4	25	24	23	27	28	32		
	Condition B	18	24	19	24	23	24	18	27	20	31		
	Sign of A – B	+	+	+	-	+	NA	+	+	+	+		
 Let S__ be the number of "-" out of 9 pairs = 1 S₊ be the number of "+" out of 9 pairs = 8 Under H₀, Test Statistic: S = min {S₊, S__} = S__ ~ B(9, 0.5) Since <i>p</i>-value = 2×P(S ≤ 1) = 0.0391 > 0.02, we do not reject H₀. Hence there is insufficient evidence at 2% significance level that there is a difference in the reaction times of participants the two conditions. (b) If the investigation is about whether the reaction times of participants are shorter under condition B, then we would be testing H₀: m = 0, against H₁: m > 0 ⇒ p-value = P(S__ ≤ 1) = 0.0195 < 0.02 Thus we would reject H₀ instead and the conclusion would change. (c) The distribution of the differences is not known to be symmetrical about the median, he Wilcoxon test might be inappropriate. OR The data obtained in this case have too many tied ranks (e.g. 4 participants with difference of 2 using Wilcoxon matched pair signed rank test would not be appropriate. 									pants under er an, hence a				

Section B: Probability and Statistics [50 marks]

	Solution
P2 Q7	(a) Let X be the number of views the company's website receives. For 3 hours, $X \sim Po(15)$.
	$P(X > 20) = 1 - P(X \le 20)$ = 0.0830 (to 3 sf)
	 (b) The session durations of users of the webpage are independent of each other. (OR Whether a view is a quality one is independent of another.) The probability that a user spends more than 3 minutes on the webpage is a constant, <i>p</i>, for every user. (OR The probability of having a quality view is a constant.) (c) E(Y)=4 ⇒ p=0.25
	(c) $E(T) = 4 \Rightarrow p = 0.25$ $\therefore Y \sim \text{Geo}(0.25)$
	Required probability = $(0.75)^6$ = 0.178 (to 3 sf)
	(d) P(10 th view is 2nd quality view 3 rd view is 1st quality view) = P(only the last view amongst 7 views is a quality view) = (0.75) ⁶ (0.25) = 0.0445 (to 3 sf) Or Required probability = $\frac{(0.75)^8 (0.25)^2}{(0.75)^2 (0.25)} = (0.75)^6 (0.25) = 0.0445$

	Solution
P2 Q8	(a) $\int_{0}^{1} \frac{1}{\sqrt{x-x^{2}}} dx = \int_{0}^{1} \frac{1}{\sqrt{\left(\frac{1}{2}\right)^{2} - \left(x - \frac{1}{2}\right)^{2}}} dx$
	$= \left[\sin^{-1} \frac{x - \frac{1}{2}}{\frac{1}{2}} \right]_{0}^{1}$ $= \sin^{-1}(1) - \sin^{-1}(-1)$
	$=\frac{\pi}{2} - \left(-\frac{\pi}{2}\right) = \pi (\text{shown})$
	$(\mathbf{b})(\mathbf{i}) \ k = \frac{1}{\pi}$
	(b)(ii)
	$E(X) = \frac{1}{\pi} \int_{0}^{1} \frac{x}{\sqrt{x - x^{2}}} dx$
	$= \frac{1}{\pi} \left[\frac{1}{2} \int_{0}^{1} \frac{1}{\sqrt{x - x^{2}}} dx - \frac{1}{2} \int_{0}^{1} \frac{1 - 2x}{\sqrt{x - x^{2}}} dx \right]$
	$=\frac{1}{\pi}\left\{\frac{\pi}{2} - \left[\sqrt{x - x^2}\right]_0^1\right\}$
	$=\frac{1}{\pi}\left(\frac{\pi}{2}\right)=\frac{1}{2}$
	<u>Alternatively:</u> Observe that the domain for the p.d.f. is finite from 0 to 1 and the p.d.f is symmetrical about 0.5, hence we have the median to be 0.5 and for a symmetrical p.d.f. over a finite domain, the mean will be equal to the median. Hence $E(X) = 0.5$.
	(b)(iii) Let the lower quartile be q .
	Then $P(X < q) = \frac{1}{4}$
	$\Rightarrow \frac{1}{\pi} \int_{0}^{q} \frac{1}{\sqrt{x - x^{2}}} dx = \frac{1}{4} (1)$

$\left[\sin^{-1}\frac{x-\frac{1}{2}}{\frac{1}{2}}\right]_{0}^{q} = \frac{\pi}{4}$
$\sin^{-1}\frac{q-\frac{1}{2}}{\frac{1}{2}}-\sin^{-1}(-1)=\frac{\pi}{4}$
$\sin^{-1}\frac{q-1/2}{1/2} + \frac{\pi}{2} = \frac{\pi}{4}$
$\frac{q - \frac{1}{2}}{\frac{1}{2}} = \sin\left(-\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}}$
$q = \frac{2 - \sqrt{2}}{4}$ (or $q = 0.146$)

Solution P2 (a) Let X and Y denote the increase in cognitive focus score after consuming Brand A and Brand B Q9 respectively. $\mathbf{H}_0: \quad \boldsymbol{\mu}_X - \boldsymbol{\mu}_Y = 0 \qquad \qquad \mathbf{H}_1: \quad \boldsymbol{\mu}_X - \boldsymbol{\mu}_Y \neq 0$ Note: the readings do not Assumptions: come from the same pair of (1) X and Y are normally distributed. participants. Do not use (2) Both populations share a common population variance. paired sample t-test! Under H₀, Test statistic: $T = \frac{\left(\overline{X} - \overline{Y}\right) - 0}{S_p \sqrt{\frac{1}{6} + \frac{1}{6}}} \sim t(10).$ where $\bar{x} = 7.3667$, $\bar{y} = 7$, $s_n^2 = 0.42348^2$ Using GC, p-value = 0.165 > 0.02. We do not reject H₀ and conclude that there is insufficient evidence at 2% significance level that there is a difference between the effects of the two brands of supplement, i.e. there is no significant evidence of a difference in the increase of cognitive focus score. **(b)** Let D = X - Yd = 1.4, -0.6, 0.1, 0.6, 0.9, -0.2From GC, $\overline{d} = 0.36667$ $s_D^2 = 0.73937^2$ A 98% confidence limit for *D* is $= 0.36667 \pm t_{(5,0.99)} \frac{s_D}{\sqrt{6}}$ $= 0.36667 \pm 3.3649 \frac{0.73937}{\sqrt{6}}$ A 98% confidence interval = (-0.649, 1.382)Alternative Let D = Y - Xd = -1.4, 0.6, -0.1, -0.6, -0.9, 0.2From GC, $\overline{d} = -0.36667$ $s_D^2 = 0.73937^2$ A 98% confidence limit for D is $=-0.36667 \pm t_{(5,0.99)} \frac{s_D}{\sqrt{6}}$ $= -0.36667 \pm 3.3649 \frac{0.73937}{\sqrt{6}}$ A 98% confidence interval = (-1.382, 0.649)(c) $H_0: \mu_D = 0$ $H_1: \mu_D \neq 0$ Since $0 \in (-0.649, 1.382)$, we do not reject H₀ and conclude that there is insufficient evidence, at the 2% significance level, that there is a significant difference between the effects of Brand A and Brand *B* (i.e. no significant evidence of an increase in cognitive focus score). (d) The paired sample t-test in (c) is more suitable as it eliminates factors of variation across different individuals such as individual's physiological state, body susceptibility towards

supplement, genetic makeup etc.

	Solution												
P2	(a) Let X be the no. of emergency calls received at the fire station in a day.												
Q10	H_0 : X follows a Poisson distribution.												
	H_1 : <i>X</i> does not follow a Poisson distribution.												
	Since the parameters are not provided, we find $\bar{x} = \frac{\sum fx}{\sum f} = 2.1667$. Thus, an estimate of $\lambda = E(X) \approx 2.1667$.												
	Under H ₀ , P(X = x) = $\frac{e^{-\lambda}\lambda^x}{x!}$, x = 0, 1, 2,, $e_i = P(X = x) \times 60$												
	x	0	1	2	3	4	5	≥ 6					
	Oi	7	14	16	12	7	4	0					
	Ei	6.8733	14.892	16.134	11.652	2 6.3117	2.7351	1.4015					
	Since we need all $E_i > 5$,												
	X	0	1		2	3	≥4						
	Oi	7	14		16	12	11						
	Ei	6.8733	14.8	92 1	6.134	11.652	10.4483	3					
	Degr	ee of free	dom = 5 -	- 1 - 1 :	= 3								
				2	$\sum_{i=1}^{n} (F_i - I)$	$(E_i)^2$							
	Test	statistic:	Under H_0	, χ ² =	$\sum_{i=1}^{k} \frac{E_i}{E_i}$	$\frac{E_i)^2}{2} \sim \chi_3^2$							
	Valu	e of χ^2 =	0.09642	5									
	<i>p</i> -val	ue = 0.99	2										
	Since <i>p</i> -value is almost 1, there is little to no evidence to conclude that the data does not have a Poisson distribution with $\lambda = 2.1667$ i.e. there is strong evidence to support the analyst's claim of Poisson distribution.												
	(b) T	ч		6 .		11	C 1						
								tment of the data provided <u>are</u> fit to the Poisson distribution.					
	~ ~	$e: s^2 = 1.9^2$	-		-	• • • • • • • • • • • • • • • •	5 . 500 . 1						
			,	,									
							remains th	he same, the new observed frequencies					
						$es = 20 E_i$.	hon 5 m	do not pood to college cotocomics and					
		df = 7 - 1	-	nequen	lies afe n	ow larger t	man 5, we	e do not need to collapse categories and					
	$\frac{100}{x}$	$\begin{vmatrix} \mathbf{u} - \mathbf{v} & \mathbf{i} \\ 0 \end{vmatrix}$	1 1	2	3	4	5	≥ 6					
	Oi	140	280	320	240	140	80	0					
	Ei	137.47					54.703	28.03					
	$\chi_{\text{new}}^{2} = \sum_{i=1}^{7} \frac{(20F_{i} - 20E_{i})^{2}}{20E_{i}} = 42.576$												
	Since $\chi_{\text{new}}^2 > \chi_{(0.9,5)}^2 = 9.236$, we reject H ₀ and conclude that at 10% significance level, the												
	sufficient evidence that the data does not have a Poisson distribution with $\lambda = 2.1667$ i.e. there is evidence to refute the analyst's claim.												
	Alter	natively											

<u>Alternatively.</u> p-value = $4.50 \times 10^{-8} < 0.1$, we reject H₀...