CHAPTER 4

INTRODUCTION

The logarithm of Y to the base a is the exponent to which a must be raised to yield Y. That is,

$$\log_a Y = x$$
 if and only if $a^x = Y$

Thus $\log_2 4 = 2$ since $2^2 = 4$ and $\log_2 8 = 3$ since $2^3 = 8$

Example 1

- a) $3^2 = 9$; then $2 = \log_3 9$ 2 is the logarithm of 9 to base 3.
- b) $10^2 = 100$; so $2 = \log_{10} 100$ 2 is the logarithm of 100 to base 10.

Example 2 If $log_{10}N = 3$, find the value of N.

Example 3 Given that $log_x 81 = 4$, find the value of x.

Example 4 Evaluate, log₈2 without using calculator.

4.1 LAWS OF LOGARITHMS

$$log_a xy = log_a x + log_a y$$

$$\log_a \frac{x}{y} = \log_a x - \log_a y$$

$$\log_a x^n = n \log_a x$$

4.2 SPECIAL LOGARITHMS

- 1. $log_a a = 1$
- e.g. $\log_2 2 = 1$, $\log_5 5 = 1$
- 2.
- $log_a 1 = 0$ e.g. $\log_2 1 = 0$, $\log_9 1 = 0$
- $\log_a \frac{1}{x} = -\log_a x$ 3.
- Natural logarithm 4.
- $\ln N = \log_e N$ (where e = 2.71828183)

Simplify $\log_3 2 + \log_3 5 + \log_3 20 - \log_3 25$ Example 5

Simplify $3 \log 3 + \log 10 - \log 3$ (assume same base) Example 6

Example 7 $Simplify \log_2 16 - \log_2 8 + \log_2 4$

Example 8 Write the following expression as a single logarithm.

$$2\log_{10} x + 3\log_{10}(x+2) - \log_{10}(x^2+5)$$

Example 9 Solve the equation $2^x = 5$

Example 10 Given that $\log_3 2 = 0.631$, $\log_3 5 = 1.465$; find the value of $\log_3 1.2$

4.3 CHANGE OF BASE

- a) Logarithms to *base 10* are called "common logarithms", and are denoted by lg. When the base is 10, this number is generally omitted.
 - i.e. *log N* denotes the logarithm of N to the base 10.
- b) Logarithms to *base e* are called "natural logarithms", and are denoted by ln. e has approximately the value 2.718.
 - i.e. $log_e N$ is written as ln N

c) Logarithms can be to any base; however common logarithms are exclusively used for calculations at this stage.

d) Where logarithms to other bases are encountered, they have to be changed to base 10 for a numerical answer.

To change from base a to base b:

$$\log_a N = \frac{\log_b N}{\log_b a}$$

Example 11 Find the value of (a) $\log_3 4$ (b) $\log_2 10$

Example 12 Find the value of x: $\log_2 x + \log_4 x = \frac{3}{2}$

Example 13 Find the positive value of $x : \log_2 x = \log_4(x+6)$

Find the value of $x : \log_3 x - 4 \log_x 3 + 3 = 0$ Example 14

TUTORIAL 4

Write each of the following in logarithmic form. For example, $3^4 = 81$ can be 1. written as $log_3 81 = 4$.

(a)
$$2^4 = 16$$

(b)
$$125 = 5^3$$

$$(c)64 = 16^{\frac{3}{2}}$$

(a)
$$2^4 = 16$$
 (b) $125 = 5^3$ (c) $64 = 16^{\frac{3}{2}}$ (d) $81 = (\frac{1}{3})^{-4}$

Write each of the following in exponential form. For example, log_5 125 = 3 can be 2. written as $5^3 = 125$.

(a)
$$\log_2 32 = 5$$

(b)
$$2 = \log_5 25$$

(c)
$$7 = \log_2 128$$

(d)
$$-2 = \log_3(1/9)$$

(e)
$$\log_{e} 1 = 0$$

(f)
$$2 = \log_a X$$

(g)
$$\ln 20.09 = 3$$

3. Determine the value of each of the following logarithms.

(b)
$$\log_{10} 10^7$$

$$(c)\log_{27}3$$

(a)
$$\log_2 64$$
 (b) $\log_{10} 10^7$ (c) $\log_{27} 3$ (d) $\log_5 125$ (e) $\log_{10} 10^{-6}$

4. Write each of the following as a single logarithm.

(a)
$$3\log_a 2 + 2\log_a 3 - 2\log_a 6$$

(b)
$$3\log_2 5 - 2\log_2 7$$

(c)
$$\frac{1}{2}\log_5 64 + \frac{1}{3}\log_5 27 - \log_5(x^2 + 4)$$

(d)
$$3\log_2(x+2) + \log_2 8x - 2\log_2(x+8)$$

(e)
$$2\log_5 x - 3\log_5 (2x+1) + \log_5 (x-4)$$

- 5. Evaluate, without using calculator:
 - $3\log_{10}2 + 2\log_{10}5 \log_{10}20$ (a)

(b)
$$\log_{10} \frac{41}{35} + \log_{10} 70 - \log_{10} \frac{41}{2} + 2\log_{10} 5$$

(c)
$$\log_{10} \frac{14}{15} + \log_{10} \frac{21}{20} - \log_{10} \frac{49}{50}$$

6. Solve the equations:

(a)
$$3^x = 2$$

(b)
$$3^{4x} = 4$$

(c)
$$2^x 2^{(x+1)} = 10$$

$$(d) \left(\frac{1}{2}\right)^x = 6$$

(d)
$$(\frac{1}{2})^x = 6$$
 (e) $(\frac{2}{3})^x = \frac{1}{16}$

- 7. Given that $\log_2 3 = 1.585$, and $\log_2 5 = 2.322$, calculate the values of $\log_2 60$ and $\log_2 0.3$.
- If $\log_7 2 = 0.356$ and $\log_7 3 = 0.565$, find the value of $\log_7 \frac{8}{9} + 2\log_7 \frac{9}{2}$ 8.
- 9. Solve each of the following equations.

(a)
$$\log_2 x + \log_2 (x+2) = 3$$

(b)
$$\log_3 x - \log_3 (2x+3) = -2$$

10. Find the values of x in

$$\log_2 x + \log_x 2 = 2$$

(b)
$$\log_3 x - 2\log_x 3 = 1$$

Challenging Questions

- 1 If $u = \log_4 x$, find in term of u
 - (a) \mathcal{X}
 - (b) $\log_4 2x$
 - (c) $\log_{x} 64$
- 2 (a) If $\log_8 x = p$, express $\log_2 x$ in terms of p.

 Given that $\log_q (xy) = 3$ and $\log_q (x^2 y^3) = 4$.

 Calculate the values of $\log_q x$ and $\log_q y$
- 3 (a) Calculate the value of $\log_3 8$. Giving your answer correct to 3 significant figures.
 - (b) Evaluate x if $\log_2(1+x) + \log_2(5-x) \log_2(x-2) = 3$