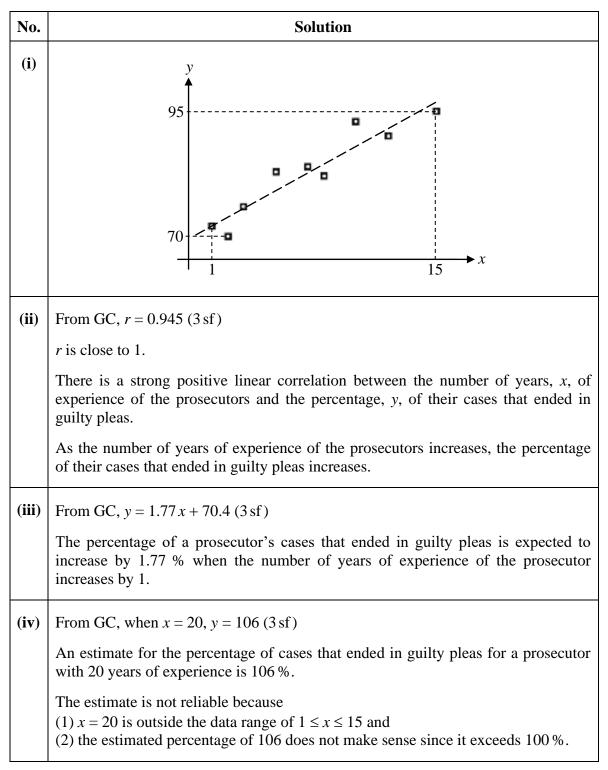
No.	Solution
(i)	Let μ and σ denote the mean and standard deviation of <i>X</i> .
	$P(X < 0) = 0.06 \implies P\left(Z < \frac{0-\mu}{\sigma}\right) = 0.06 \text{ where } Z \sim N(0,1)$
	$\Rightarrow \frac{0-\mu}{\sigma} = -1.55477$
	$\Rightarrow \mu - 1.55477 \sigma = 0 (1)$
	$P(X \ge 15) = 0.029 \implies P\left(Z \ge \frac{15 - \mu}{\sigma}\right) = 0.029 \text{ where } Z \sim N(0, 1)$
	$\Rightarrow \frac{15 - \mu}{\sigma} = 1.89570$
	$\Rightarrow \mu + 1.89570\sigma = 15 (2)$
	Solving (1) and (2), $\mu = 6.76$ and $\sigma = 4.35$ (3 sf)
(ii)	-8 6.768

No.	Solution
(i)	$P(A B) = \frac{1}{6} \Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{1}{6} \Rightarrow P(B) = 6k$
	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
	$\Rightarrow \frac{9}{20} = \frac{1}{5} + 6k - k$
	$\therefore k = \frac{1}{20}$
(ii)	$P(A' \cap B) = P(A \cup B) - P(A) = \frac{9}{20} - \frac{1}{5} = \frac{1}{4}$
(iii)	$P(A') \times P(B) = \frac{4}{5} \times 6k = \frac{6}{25}$
	Since $P(A' \cap B) \neq P(A') \times P(B)$, the events A' and B are not independent.

No.	Solution
(i)	Let X denote the number of defective lamps in a sample of 30 lamps
	$X \sim B(30, 0.05)$
	The expected number of defective lamps is $E(X) = 30 \times 0.05 = 1.5$
(ii)	P(X ≥ 1) = 1 – P(X = 0) = 0.785 (3 sf)
(iii)	Required probability = P(X \le 2 X \ge 1) = $\frac{P(1 \le X \le 2)}{P(X \ge 1)}$ = $\frac{P(X = 1) + P(X = 2)}{P(X \ge 1)}$ = $\frac{0.59754}{0.78536} = 0.761 (3 \text{ sf})$



No.	Solution
(i)	Let S (in grams) denote the mass of fries in a small packet.
	$S \sim N(80, 2^2)$
	P(S < 77) = 0.066807
	Required probability = $[P(S < 77)]^2 = 0.00446 (3 \text{ sf})$
(ii)	Let L (in grams) denote the mass of fries in a large packet.
	$L \sim N(150, 3^2)$
	Let $X = L_1 + L_2 \sim N(150 \times 2, 3^2 \times 2)$, i.e. N(300, 18)
	Let $Y = S_1 + \dots + S_4 \sim N(80 \times 4, 2^2 \times 4)$, i.e. N(320, 16)
	$Y - X \sim N(320 - 300, 18 + 16)$, i.e. N(20, 34)
	$P(Y - X \ge 15) = 0.80441 = 0.804 (3 \text{ sf})$
(iii)	$1.72S \sim N(80 \times 1.72, 2^2 \times 1.72^2)$, i.e. N(137.6, 11.8336)
	$0.86L \sim N(150 \times 0.86, 3^2 \times 0.86^2)$, i.e. N(129, 6.6564)
	1.72 <i>S</i> – 0.86 <i>L</i> ~ N(137.6 – 129, 11.8336 + 6.6564), i.e. N(8.6, 18.49)
	P(1.72S - 0.86L > k) > 0.7
	From GC, <i>k</i> < 6.35
	\therefore The largest integer value of k is 6.
	Alternatively,
	when $k = 5$, probability = 0.79876 > 0.7,
	when $k = 6$, probability = $0.72729 > 0.7$, when $k = 7$, probability = $0.64509 < 0.7$.
	\therefore The largest integer value of k is 6.

No.	Solution
(i)	Number of ways = ${}^{5}P_{4} \times 8! = 4838400$
(ii)	Required probability = $\frac{{}^{4}P_{3} \times 9!}{12!} = \frac{1}{55}$
(iii)	Required probability = $\frac{3! \times 2 \times 9!}{12!} = \frac{1}{110}$
(iv)	Number of ways for the team to consist of 2 pupils who play sports = ${}^{3}C_{2} \times {}^{9}C_{3} = 252$
	Number of ways for the team to consist of 3 pupils who play sports $= {}^{3}C_{3} \times {}^{9}C_{2} = 36$
	$\therefore \text{ Required probability} = \frac{252 + 36}{{}^{12}\text{C}_5} = \frac{4}{11}$
(v)	Let A denote the event that the team consists of at least 2 pupils who play sports, and let B denote the event that the team consists of all boys.
	$P(A) = \frac{4}{11}$
	$P(B) = \frac{{}^7C_5}{{}^{12}C_5} = \frac{7}{264}$
	$P(A \cap B) = \frac{{}^{5}C_{3} \times {}^{2}C_{2}}{{}^{12}C_{5}} = \frac{5}{396}$
	$\therefore \text{ Required probability} = P(A \cup B)$
	$= P(A) + P(B) - P(A \cap B)$
	$=\frac{299}{792}$

No.	Solution
(i)	Unbiased estimate of the population mean, $\overline{x} = \frac{3290}{60} = \frac{329}{6}$ or 54.8 (3 sf)
	Unbiased estimate of the population variance,
	$s^{2} = \frac{1}{59} \left(201100 - \frac{(3290)^{2}}{60} \right) = 350.82 = 351 \ (3 \text{ sf})$
(ii)	A 1-tail test should be carried out as the investigation is to find out if the minimum recommended time is met, and thus we are only concerned if the mean time spent is less than 60 minutes.
(iii)	Let μ denote the population mean time spent.
	Test $H_0: \mu = 60$ against $H_1: \mu < 60$ at the 5 % significance level
	Under H_0 , since <i>n</i> is large, by Central Limit Theorem,
	$\overline{X} \sim N\left(60, \frac{350.82}{60}\right)$ approximately
	Using a 1-tail test, $\overline{x} = \frac{3290}{60}$ gives <i>p</i> -value = 0.0163 (3 sf)
	Since p -value = 0.0163 < 0.05, we reject H ₀ and conclude that there is sufficient evidence at the 5 % significance level that the minimum recommended time of 60 minutes is not met.
(iv)	Test $H_0: \mu = 60$ against $H_1: \mu \neq 60$ at the 5 % significance level
	Under H_0 , since <i>n</i> is large, by Central Limit Theorem,
	$\overline{X} \sim N\left(60, \frac{15^2}{60}\right)$ approximately
	$Z = \frac{\overline{X} - 60}{\sqrt{\frac{15^2}{60}}} \sim N(0,1)$

$$z_{cal} = \frac{k - 60}{\sqrt{\frac{15^2}{60}}}$$

Using a two tailed test, reject H₀ when $z_{cal} \le -1.96$ or $z_{cal} \ge -1.96$
Since H₀ is rejected, $z_{cal} \le -1.96$ or $z_{cal} \ge -1.96$
 $\frac{k - 60}{\sqrt{\frac{15^2}{60}}} \le -1.96$ or $\frac{k - 60}{\sqrt{\frac{15^2}{60}}} \ge -1.96$
Hence $k \le 56.2$ or $k \ge 63.8$ (3 sf)