DARRELL ER (COPYRIGHTED) ©

TOPIC 11.1: FUELS & CRUDE OIL

candon liot as ned

Section 1999 Section 1997 Secti

and the second s

A limit of the control of the contro

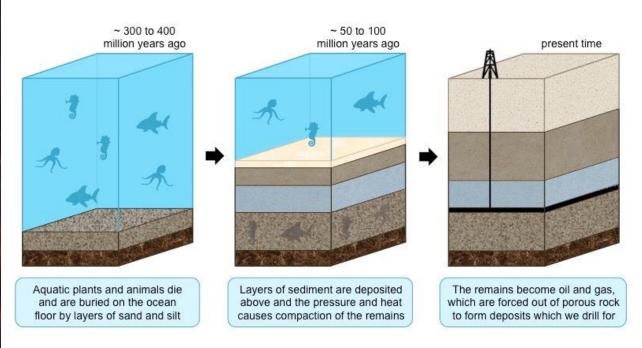
THE ABOUT

- Straight forward topic
- Some memorising to be done

CHAPTER ANALYSIS

EXAM

- Tested in MCQ mainly
- Linked to 'fractional distillation' from Chapter 1.2
 'Separation Techniques'


- Light overall weightage
- Constitute to around 1.5% of marks for past 5 year papers

KEY CONCEPT

FUELS & CRUDE OIL METHANE & PETROLEUM FRACTIONAL DISTILLATION OF PETROLEUM

Fuels & Crude Oil

4

Fossil Fuels and Crude Oil

Fossil fuels are created due to compaction and heat from the remains of aquatic plants and animals.

Upon extraction, it is known as **crude oil or petroleum**, which is a thick black liquid. In order to be used as fuel for planes, cars and cooking, it has to undergo **fractional distillation** first.

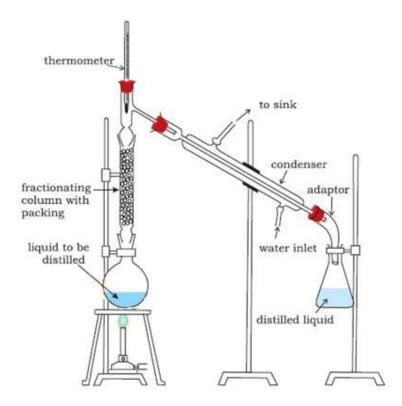
Natural gas is a colourless gas found near fossil fuels in the earth's crust.

Hydrocarbons are compounds that contain **only hydrogen and carbon atoms**. Petroleum and natural gas are examples of the hydrocarbons.

Petroleum is a mixture of hydrocarbons that has differing numbers of carbon atoms while **natural gas** comprises mainly **methane CH₄** (up to 90%).

COMPETING USE

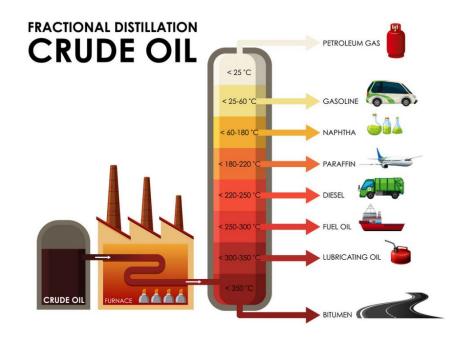
Petroleum, however, is a **non-renewable and limited resource**.


There is a **large demand from the petrochemical industry** as naphtha is used as a **chemical feedstock**.

Production of substances such as plastics and drugs will be affected when petroleum eventually runs out.

Recall from 'Chapter 1.2 – Separation Techniques', **fractional distillation** is used to separation solutions with different boiling points.

A similar concept is used to separate the hydrocarbons into the different components!


Fractional Distillation

Fraction	Boiling Point	Carbon atoms	Uses
Petroleum Gas	< 25°C	1- 4	Fuel for cooking
Petrol / Gasoline	25°C - 60°C	5 - 10	Fuel for car vehicles
Naphtha	60°C - 180°C	8 – 12	chemical feedstock
Paraffin	180°C - 220°C	10 – 16	Aircraft fuel, heating & cooking
Diesel	220°C - 250°C	15 - 25	Fuel for diesel engines like buses & lorries
Lubricating Oil	300°C - 350°C	19 - 35	Machine lubricants; polishes & waxes
Bitumen	>580°C	>70	Surfacing roads

FRACTIONAL DISTILLATION OF PETROLEUM

Petroleum is a **mixture of hydrocarbons** that has different number of carbon atoms. The **different no. of carbon atoms** result in them having different boiling points.

Petroleum needs to undergo **fractional distillation** to be separated into useful fractions.

CLASSIFICATION OF ORGANIC COMPOUNDS

HOMOLOGOUS SERIES

A **homologous series** is defined as a family of organic compounds that has

:

- Same general formula
- Same functional group
- Similar chemical properties (undergo similar chemical reactions)
- Gradual change in physical properties
- Each member differs from the next by -CH₂

FUNCTIONAL GROUP

A **functional group** is an atom or a group of atoms that is responsible for the chemical properties of the molecule:

- C=C bond in alkenes
- -OH group in alcohols
- -COOH group in carboxylic acids
- -COO- group in esters

NAMING OF ORGANIC COMPOUNDS

Prefix	Number	
Meth-	1	
Eth-	2	
Prop-	3	
But-	4	
Pent-	5	
Hex-	6	
Нер-	7	
Oct-	8	
Non-	9	
Dec-	10	

Suffix	Homologous series	Example
-ane	Alkanes	Propane C ₃ H ₈
-ene	Alkenes	Butene C ₄ H ₈
-ol	Alcohol	Ethanol C ₂ H ₅ OH
-oic acid	Carboxylic Acid	Pentanoic acid C ₄ H ₉ COOH

Try it yourself! (TYS Question)

21. Petroleum can be separated into fractions by fractional distillation. Which statement about this process is **not** correct?

(N2015/P1/Q38)

- A In a fractionating column, the bitumen fraction is obtained below the kerosene fraction.
- B The fraction obtained at the top of the fractionating column has the highest boiling point.
- C The lubricating oil fraction is a source of polishes and waxes.
- D The relative molecular masses of the compounds obtained near the bottom of the fractionating column are higher than those of the compounds obtained near the top of the column.

(

Answer:

21. B
The fraction obtained at the top of the fractionating column has the lowest boiling point.

Try it yourself! (TYS Question)

42. Petroleum can be separated into fractions using fractional distillation.

Which statements are correct? (N2019/P1/Q32)

- Alkanes used in polishes and waxes have a higher boiling point than those used as diesel fuel.
- 2 Any of the fractions could be used as fuels because their enthalpy changes of combustion are negative.
- 3 The fraction used for petrol (gasoline) is extracted from higher up the fractionating column than the fraction used for paraffin (kerosene).
- The fraction obtained at a particular point in the fractionating column always contains the same compounds in the same ratio.

A 1, 2 and 3

B 1 and 4

C 2 only

D 3 and 4

Answer:

42. A

Fractions used as fuels produce energy when burnt and the fraction obtained at a particular point does not always contain the same compounds in the same ratio.

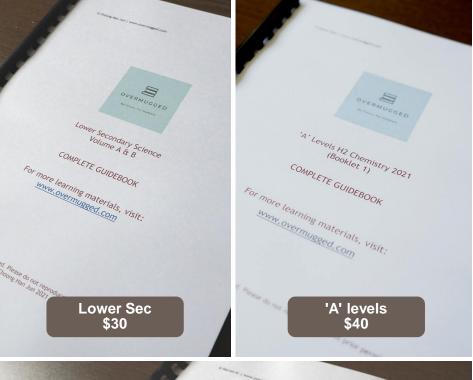
About Us

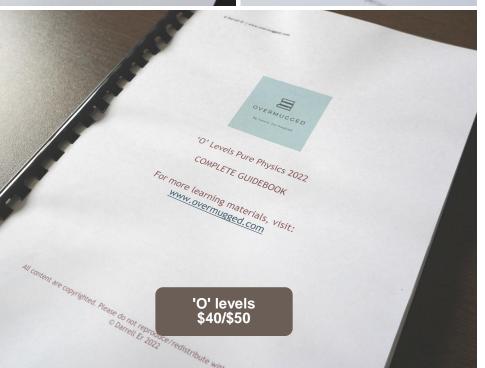
OVERMUGGED is a learning platform created by tutors, for students.

Our team of specialist tutors offer 1-to-1 private tuition, group tuitions and crash courses.

Follow us on <u>IG</u> and join our <u>Telegram channel</u> to get the latest updates on our free online revision sessions, webinars and giveaways!

If you would want to join Darrell's group tuition, contact him at:


Whatsapp: <u>8777 0921</u>


Telegram: @DarrellEr

Website: https://www.overmugged.com/darrell

Notes prepared by: Darrell Er **'O' Levels Chemistry & Physics**

For more free notes & learning materials, visit: www.overmugged.com

Found the free notes useful? We got something better!

OVERMUGGED's curated notes is a **highly condensed booklet** that **covers all content within the MOE syllabus**.

This booklet consist of **key concept breakdowns**, **worked examples** and **exam tips/ techniques** to required to ace your exams.

Get an **upgraded version** of the free notes and supercharge your revision!

Purchase here.

Crash courses

Check out our upcoming crash courses at: https://www.overmugged.com/crashcourses

'O' levels subject available:

- Pure Chemistry
- Pure Physics
- Pure Biology
- Combined Science
- E-Math
- -A-Math
- -English
- History
- Geography
- Combined Humanities
- Principles of Accounts (POA)