
2009 JJC Preliminary Examination Mark Scheme

(ii) The prescence of <u>energetically accessible vacant orbitals</u> to <u>accept</u> <u>lone pair</u> of electrons <u>from ligands</u>.

[1]

1. (d) (iii) [2] H₂C H₂Ö Deep blue solution: $[Cu(NH_3)_4(H_2O)_2]^{2+}$ (iv) [1] 2. (i) A weak acid is a proton donor that dissociates partially. [1] (a) $[H^+] = 5.66 \times 10^{-3} \text{ mol dm}^{-3}$ (ii) [1] pН = <u>2.25</u> [1] (iii) Amount of acid used = 5×1^{-3} mol Amount of NaOH required = 5×10^{-3} mol Volume of NaOH required = $0.0500 \text{ dm}^3 = 50 \text{ cm}^3$ [1] $[OH^-] = \sqrt{K_b}$ of acetylsalicylic acid × conc of salt solution $= \sqrt{\frac{1.00 \times 10^{-14}}{3.2 \times 10^{-4}}} \times \frac{5 \times 10^{-3}}{0.05 + 0.05}$ [1] $= 1.25 \times 10^{-6} \text{ mol dm}^{-3}$ pOH = 5.90 = <u>8.10</u> [1] pН (i) $pH = pK_a = -lg(3.2 \times 10^{-4}) = 3.49$ (b) [1] (ii) When H^+ is added: $\underline{C_8H_7O_2COO^{=} + H^{\pm} \rightarrow C_8H_7O_2COOH}$ [1] When OH⁻ is added: $\underline{C_8H_7O_2COOH + OH^{=} \rightarrow C_8H_7O_2COO^{=} + H_2O}$ [1] Amount of HC/ added = 2.00×10^{-4} mol (iii) In the resultant solution: [1] Amount of C₈H₇O₂COO⁻ left = $2.5 \times 10^{-3} - 2 \times 10^{-4} = 2.30 \times 10^{-3}$ mol Concentration of C₈H₇O₂COO⁻ = $\frac{2.30 \times 10^{-3}}{50 + 25 + 2/1000}$ $= 0.0299 \text{ mol dm}^{-1}$

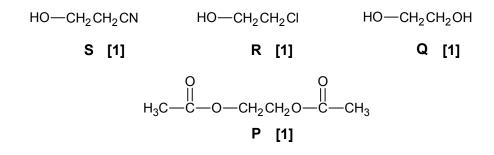
2. (b) (iii) Amount of
$$C_{8}H_{7}O_{2}COOH = \frac{2.5 \times 10^{-3} + 2 \times 10^{-1}}{50 + 25 + 2/1000} = 2.70 \times 10^{-3} mol$$
 [1]
Concentration of $C_{8}H_{7}O_{2}COOH = \frac{2.70 \times 10^{-3}}{50 + 25 + 2/1000} = 0.0351 mol dm^{-3}$
pH of the resulting solution = $-\lg(3.2 \times 10^{-4}) + \lg\frac{0.0299}{0.0351} = 3.43$ [1]
(c) (i) Step 1: Acidified KMnO₃, heat [1]
Step 11: LiA/H₅, dry ether [1]
Step 11: Dir₂ [1]
Structure of D: C₆H₅COOH [1]
(ii) Br₂, UV light [1]
(iii) Route 1 is a better pathway as Route 2 will result in multisubstituted
products being formed. [1]
(iv) Add NaOH(aq) and heat, followed by excess HNO₃(aq), then AgNO₃(aq). [1]
C₆H₆CH₂Br gives a cream precipitate of AgBr. [1]
3. (a) (i) To increase the yield of PC/₅ since reaction is exothermic. [1]
PC/₅(s) + H₂O(*I*) - POC/₅(ag) + 2HC/(ag) OR
PC(s)(s) + H₂O(*I*) - POC/₅(ag) + 2HC/(ag) OR
PC(s)(s) + H₂O(*I*) - H₂OC/₅ is obtained when sodium chloride is mixed with
silver nitrate. Precipitate dissolves in agueous ammonia to give a
colouriess solution of Ag(NH₅)₂⁺(ag)]
(ii) A white preclipitate of AgC/ is obtained when gaucous ammonia to give a
colouriess solution of Ag(NH₅)₂⁺(ag)]
(1]
When NH₃ is added, the formation of the complex ion decreases the
concentration of Ag², causing equilibrium position of the equilibrium
AgC² = Ag² + C² to shift to the right such that ionic product < K₄₀(AgC). [1]
(c) NaAt(s) + H₂SO₄(0) - Att(a() + NaHSO₄(s) [1]
2HAt(a) + H₂SO₄(0) - Att₂(g) + SO₂(g) + 2H₂O(f)
BHAt(g) + H₂SO₄(0) - Att₂(g) + H₂S(g) + 4H₂O(f) [1]

- 3. (d) P undergoes alkaline hydrolysis to form Q.
 - => P is an ester.
 - => Q is an alcohol.

Q undergoes substitution to form R => R is an alkyl halide.

R undergoes nucleophilic substitution to from S. => S contains a CN group and 1 alcohol group.

S undergoes acid hydrolysis to from T. => T contains one COOH group and 1 alcohol group


T undergoes dehydration to form U and since U undergoes electrophilic addition with Br₂ => U contains an alkene and a COOH group

[5 - for explanation]


4.

(b) (i)

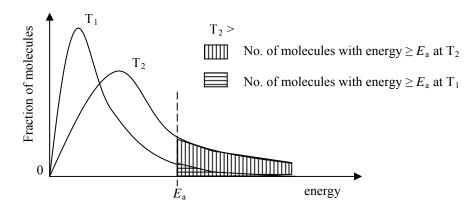
$$HO-CH_2CH_2C-OH$$
 $H_2C=CH-C-OH$
Т [1] U [1]

4. (a) (i) From experiments 2 and 3, $[H_2O_2]$ and $[H^+]$ = constant. When [I⁼] increases by 1.2 times, rate increases by 1.2 times. Therefore, Rate \propto [I⁻]. Reaction is first order with respect to I=. [1] From experiments 1 and 3, $[H_2O_2]$ and $[I^-]$ = constant. When $[H^{+}]$ increases by 1.2 times, rate remains the same. Reaction is zero order with respect to H[±]. [1] From experiments 2 and 4, $[H^+]$ and $[I^-]$ = constant. When [H₂O₂] increases by 1.25 times, rate increases by 1.25 times. Therefore, Rate \propto [H₂O₂]. Reaction is first order with respect to H₂O₂. [1] [1] <u>rate = k [H₂O₂] [l^{_}]</u> (ii) Meachanism A because it has a slow step (Step 1) involving one molecule of H_2O_2 and one I^2 ion.

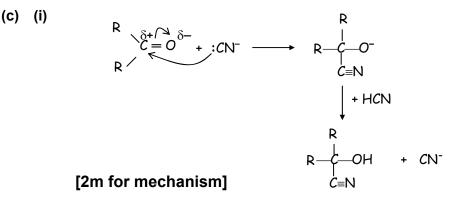
[1]

(ii) Activation energy (E_a) is the minimum amount of energy that reactants must possess before a reaction can occur. [1]

Consider the rate equation, **<u>Rate = k[A][B]</u>**


Rate constant is the proportionality constant, <u>k</u>, in the <u>experimentally</u> <u>determined</u> rate equation. [1]

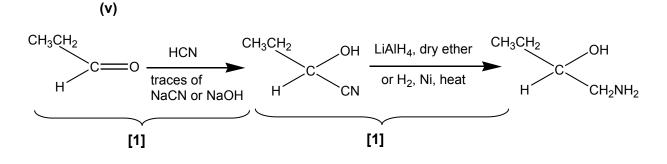
(iii) When temperature increases, activation energy <u>remains constant/unaffected</u>, rate constant <u>increases.</u> [1]


Explanation:

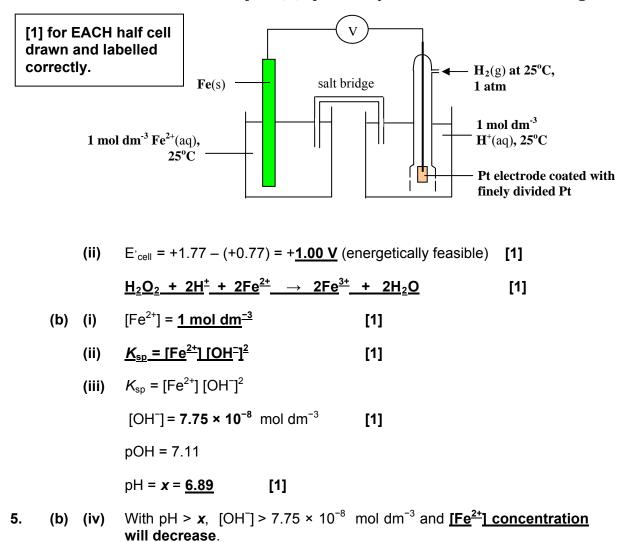
Activation energy of a reaction depends on the reaction pathway[1]

When temperature increases, the <u>number of molecules with energy</u> <u>>/≥ activation energy increases</u>, Therefore, <u>frequency of effective</u> <u>collisions</u> between molecules with energy >/≥ activation energy <u>increases</u> and hence, rate constant increases. [1]

[1 for properly labelled Boltzmann Distribution Curve]


4. (c) (ii) The <u>first step</u> is the rate determining (slow) step.

(iii) HCN is a very weak acid, almost completely un-ionised


OR ⁻<u>CN is a stronger nucleophile than HCN</u>. [1]

[1]

(iv) Nucleophilic addition is dependent on δ + on the carbon of C=O, but this is neutralised by the oxygen, with delocalisation $C=CH_3$. [1]

5. (a) (i) NO MARKS for (a) if battery is included in the diagram.

		<u>equilibrium position of <math>Fe^{2+} + 2e^{-} = Fe shifts left, favouring the oxidation process and leading to a decreasing $E(Fe^{2+}/Fe)$. [1]</math></u>		
(c)	(i)	To <u>reduce</u> any <u>Fe³⁺ present in tea leaves to Fe²⁺</u>	[1]	
	(ii)	Amt of Fe ²⁺ in 10 cm ³ solution = $\frac{26.8}{1000} \times 0.0010 \times 5$ = 1	1.34 × 10 ⁻⁴ mol [1]	
		Amt of Fe ²⁺ in 100 cm ³ solution = $1.34 \times 10^{-4} \times 10 = 1.34 \times 10^{-3}$ mol		
		Mass of iron (per gram of dry tea leaves) = $\frac{1.34 \times 10^{-3} \times 55.8}{500}$		
		= <u>1.50 × 10</u>	<u>)^{_4} g</u> [1]	
(d)	(i)	E is <u>MgCO₃</u>	[1]	
		F is <u>CO</u> ₂	[1]	
		G is <u>Mg(NO₃)₂.6H₂O</u> or <u>Mg(NO₃)₂. xH₂O</u> [[1]	
	(ii)	$MgCO_3 \rightarrow MgO + CO_2$	[1]	
		$MgCO_3 \ + \ 2HNO_3 \ \rightarrow \ Mg(NO_3)_2 \ + \ H_2O \ + \ CO_2$	[1]	

- $2Mg(NO_3)_2. xH_2O \rightarrow 2MgO + 4NO_2 + O_2 + xH_2O$ [1]
- (iii) Mg^{2+} has a smaller radius than Ba^{2+} .

 Mg^{2+} has a <u>higher charge density</u> than Ba²⁺ and hence <u>stronger</u> <u>polarising power to polarise</u> the electron cloud of the large <u>NO₃</u> <u>anion</u>.

[2]