	Anglo-Chinese Junior C JC2 Preliminary Examinations Higher 2	College	A Methodist Institution (Founded 1886)
CANDIDATE NAME		FORM CLASS	
TUTORIAL CLASS		INDEX NUMBER	

CHEMISTRY

Paper 2 Structured Questions

Candidates answer on the Question Paper. Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your index number and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, glue or correction fluid.

Answer **all** questions in the spaces provided on the Question Paper. The use of an approved scientific calculator is expected, where appropriate.

A Data Booklet is provided.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiners' use only	
1	/ 15
2	/ 9
3	/ 21
4	/ 14
5	/ 16
Total	/ 75

9729/02

2 hours

22 August 2023

- 1 This question examines the chemistry of Group 17 elements and their halides.
 - (a) A_2 and B_2 are halogens, and they are known to be more soluble in organic solvents.

In an experiment, excess A_2 was mixed with Na₂S₂O₃(aq). When cyclohexane was added, two immiscible layers were observed which were later separated using a separatory funnel. An orange-red organic layer was obtained, and the aqueous layer was divided into two portions.

To one portion of the aqueous layer, a solution of $Ba(NO_3)_2$ was added and a white precipitate formed which is insoluble in excess dilute nitric acid.

To another portion of the aqueous layer, $\mathbf{B}_2(aq)$ was added and shaken. When CHC l_3 was added, a purple organic layer was obtained.

(i)	State the identities of A_2 and B_2 .
	A ₂ : B ₂ :
(ii)	Write a balanced ionic equation for the reaction between $Na_2S_2O_3$ and A_2 .
	[1]
(iii)	Explain why halogens are more soluble in organic solvents than in water, in terms of the energy changes involved.
	[2]

- (b) In another reaction, halogens can react with alkanes to form mono-substituted products. An example is the reaction of chlorine with 2-methylpentane.
 - (i) Alkanes are generally unreactive. Explain why this is so.

(ii) This reaction is seldom used for synthesis as there are many associated problems. Firstly, several isomeric products are formed. The relative ratio of the isomeric products may be more accurately determined if relative rates of abstraction of H atoms are considered.

The relative rates of abstraction of H atoms are shown in Table 1.1.

type of H atoms	relative rate of abstraction
primary	1
secondary	4
tertiary	6

Table 1.1

By examining the difference in stability of the intermediates formed when different types of H atom are abstracted, explain the trend in the relative rate of abstraction.

(iii) Predict the ratio of the following two products **X** and **Y**, from the reaction of chlorine with 2-methylpentane, taking into account the relative rates of abstraction given in Table 1.1. Explain your reasoning.

(iv) Describe how you can distinguish between compounds X and Y in (b)(iii) by chemical means.

(v) Another problem of the reaction is poly-substitution.
[2] Suggest the condition that will give rise to formation of poly-substituted products.

(c) Hydrogen halides are dissociated at high temperatures according to the following equation:

$$2HX(g) \Longrightarrow H_2(g) + X_2(g)$$

The approximate K_c values for the above equilibrium at various temperatures for the respective hydrogen halides are shown in Table 1.2.

Table	1	.2
-------	---	----

	$K_{\rm c}$ values for dissociation of HX		
	HC <i>l</i>	HBr	HI
800	10 ⁻¹³	10 ⁻⁹	10 ⁻⁵
1000	10 ⁻¹⁰	10 ⁻⁷	10 ⁻⁴
1200	10 ⁻⁹	10 ⁻⁵	10 ⁻³
1400	10 ⁻⁷	10 ⁻⁴	10 ⁻²

Using the information in Table 1.2 and relevant data from the *Data Booklet*, describe and explain the relative thermal stability of the hydrogen halides.

 [3]

[Total: 15]

2 (a) Write the electronic configuration of Mg²⁺ and explain why the ionic radius of Mg²⁺ is smaller than the atomic radius of Mg.

(b) Table 2.1 gives the melting points, in °C, of the fluorides and chlorides of two elements in Period 3.

Table 2.1

	magnesium	silicon
fluoride	1261	-90
chloride	714	-70

Explain, in terms of structure and bonding, the differences in melting point between

(i) MgC l_2 and SiC l_4

(ii) MgCl₂ and MgF₂

(c) The reaction scheme in Fig. 2.2 shows how a sample of anhydrous magnesium chloride is converted into a solution containing compound **F**.

Fig. 2.2

Upon analysis, **F** is found to contain the following percentage composition by mass:

Ag, 52.6%; Cl, 17.3%; N, 13.6%; C, 11.7%; H, 4.8%.

(i) Determine the empirical formula of F and hence suggest a possible identity for F.

[2]

(ii) State the observation when excess dilute nitric acid is added to F and write a balanced equation for this reaction.

[Total: 9]

3 Decarboxylation is one of the oldest known organic reactions. It is a chemical reaction that releases carbon dioxide and requires a carbonyl or carboxylic acid to be two atoms away from a carboxylic acid.

Two examples of decarboxylation are shown below:

Example 1:

Example 2:

- (i) Draw the curly arrows to illustrate the mechanism for step 1 in the diagram above for Example 1.
 - (ii) Draw the structure of the intermediate when compound J undergoes decarboxylation.

(iii) Two different keto-acids, K and L, can undergo decarboxylation to give M.

Suggest possible structures of K and L.

(iv) Given that L is more acidic than K, suggest the structure of L. Explain your answer.

(b) Compound N has the molecular formula C₈H₁₂O₃. When heated with dilute acid, it produces O, C₃H₈O and P, C₅H₆O₃. O gives a yellow precipitate when warmed with aqueous alkaline iodine. P undergoes decarboxylation to give Q. When Q is reacted with cold alkaline KMnO₄, R is produced.

(i) Draw the structures of N, O, P and Q.

		[4]
(ii)	Write the balanced ionic equation for the reaction betwee solution of copper(II) tartrate (Fehling's reagent). You may use RCHO to represent R .	een R and an alkaline
		[1]
(iii)	Suggest the function of tartrate in Fehling's reagent.	
© ACJC2023	9729/02/Prelim/2023	[Turn over

(iv) Tartrate is the di-anionic form of tartaric acid. The condensed structural formula of tartaric acid is HO₂CCH(OH)CH(OH)CO₂H. Tartaric acid exists in three stereoisomeric forms.

Draw the stereoisomer of tartaric acid which has no effect on plane-polarised light.

[1]

(c) Prussian Blue (PB) played an important role in the historical development of dyes. PB has high colouring ability and has been widely used to colour paints, inks, textiles, and other commercial products.

There are various members in the family of pigments containing iron(II), iron(III) and cyanide – for instances, Turnbull's Blue (TB), Prussian Brown (PBr) and William White (WW).

(i) The typical method for the preparation of PB is by the reaction of ferric cations, Fe³⁺, with potassium hexacyanoferrate(II), K₄[Fe(CN)₆].
The chemical equation below is **not** balanced.

$$Fe^{3+} + Fe(CN)_6^{4-} \rightarrow PB$$

State the molecular formula of PB, given that this form of PB is an uncharged compound which does not contain K⁺, and its formula mass is 858.6.

......[1]

(ii) The typical method for the preparation of WW is by the reaction of ferrous cations, Fe²⁺, with potassium hexacyanoferrate(II), K₄[Fe(CN)₆]. The chemical equation below is **not** balanced.

$$K^+ + Fe^{2+} + Fe(CN)_6^{4-} \rightarrow WW$$

State the molecular formula of WW, given that this form of WW is an uncharged compound, and its formula mass is 345.8.

In the presence of citrate, during irradiation, especially those involving ultra-violet radiation, the Fe(III) in PBr is partially reduced, producing PB. If the exposure time is too long, PB will be further converted into WW.

The citrate ion functions as the reducing agent in both stages, undergoing decarboxylation to form 3-oxopentanedioate.

The structural formulae of citrate and 3-oxopentanedioate are given below.

[Total: 21]

4 This question is about silver and its compounds.

The solubility of silver(I) chloride, AgCl, at different concentrations of Cl^{-} is expressed by the two equilibria.

equation 1	$AgCl(s) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq)$	$K_1 = 1.8 \times 10^{-10} \text{ mol}^2 \text{ dm}^{-6}$
equation 2	$Ag^{+}(aq) + 2Cl^{-}(aq) \rightleftharpoons AgCl_{2}^{-}(aq)$	$K_2 = 1.8 \times 10^5 \text{ mol}^{-2} \text{ dm}^6$

Fig. 4.1 shows the solubility of AgCl against concentration of Cl⁻.

(a) Use the information and equilibria concepts to explain the shape of the graph in Fig. 4.1.

(b) (i) Write an expression for the equilibrium constant, K_2 .

[1]

(ii) Hence, use equations 1 and 2 to show that the concentration of $AgCl_2^-$ is expressed as $[AgCl_2^-] = 3.24 \times 10^{-5} \times [Cl^-]$.

- (c) The solubility of AgC*l* is expressed as the sum of the concentrations of Ag⁺ and AgC l_2^- . Solubility of AgC*l* is lowest when [Ag⁺] = [AgC l_2^-].
 - (i) Use your answer in (b)(i) to calculate the concentration of Cl^- when $[Ag^+] = [AgCl_2^-]$.

(ii) Hence, calculate the lowest solubility of AgCl.

[2]

[2]

- (d) One of the uses of silver(I) chloride is found in the silver chloride electrode used in electrochemical measurements. The electrode consists of a metallic silver wire coated with a thin layer of silver(I) chloride in aqueous potassium chloride and its standard electrode potential is +0.23 V when measured against the standard hydrogen electrode.
 - (i) Define the term standard electrode potential.

.....[1]

9729/02/Prelim/2023

(ii) Draw a labelled diagram to illustrate the setup used to measure the standard electrode potential of the silver chloride electrode. Include the direction of electron flow.

[3]

(iii) Use relevant information in the *Data Booklet* to calculate the standard electrode potential of the Ag⁺(aq) | Ag(s) half-cell when referenced against the silver chloride electrode.

[1]

5 The World Health Organisation has recently classified aspartame, an artificial sweetener, as a possible carcinogen. Even though it has the same energy and caloric content by mass compared with table sugar (4 kcal g⁻¹), it is 200 times as sweet and is thus beneficial for use as a sugar substitute in foods and beverages.

A typical canned soda contains 40 g of table sugar.

(a) Drinks sweetened with aspartame to the same sweetness as table sugar are commonly marketed as "zero calories".

Show, with calculations, that the caloric content, in kcal, in a canned soda sweetened with aspartame is negligible. Leave your answer to 1 decimal place.

[1]

- (b) The acceptable daily intake of aspartame was determined to be 40 mg per kg of body weight per day.
 - (i) Calculate the maximum number of canned sodas sweetened with aspartame a man weighing 72 kg can consume a day to stay within the acceptable daily intake.

The daily recommended calorie intake for a man is 2400 kcal.

(ii) The man considered consuming the number of canned sodas sweetened with aspartame calculated in (b)(i) to meet his daily recommended calorie intake.

Evaluate, with calculations, if he will meet his daily recommended calorie intake.

[1]

9729/02/Prelim/2023

Aspartame is a methyl ester of a dipeptide consisting of two amino acids, aspartic acid, and phenylalanine. Like many other peptides, aspartame is prone to hydrolysis, and this takes place in the stomach as well.

(c) (i) State the number of stereoisomers for aspartame.

.....

[1]

(ii) Consider the stomach to contain hydrochloric acid, draw the structures of the hydrolysed products.

[3]

The p K_a values associated with aspartic acid are 2.0, 3.9 and 9.9.

(iii) Assign, with explanation, the pK_a value to the side chain of aspartic acid.

[2]

(iv) Hence, draw the zwitterionic form of aspartic acid.

[1]

(v) Write two equations to show how aspartic acid may function as a buffer at pH 2.0.

[2]

(d) Aspartic acid can be synthesised in two steps from oxaloacetic acid in a process known as reductive amination.

The first step involves a condensation reaction with the ketone and a nitrogen-containing molecule to form an imine containing a C=N bond, and the second step involves reduction of the imine to form the amine.

(i) Suggest the reagents and conditions needed for this synthesis. Include the structure of the intermediate.

(ii)	Comment on the optical activity of the synthesised aspartic acid.
	[1]
	[Total: 16]

[3]

BLANK PAGE