

GAN ENG SENG SCHOOL

Preliminary Examination 2024

CANDIDATE NAME		
CLASS	INDEX NUMBER	
CUEMIETE		6002/04

CHEMISTRY Paper 1 Multiple Choice 6092/01 9 September 2024

1 hour

Additional Materials: OTAS

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid. Write your name, class and index number on the OTAS. Shade your index number on the OTAS.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice **in soft pencil** on the separate Answer Sheet.

Read the instructions on the OTAS very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. A copy of the Periodic Table is printed on page **18**. The use of an approved scientific calculator is expected, where appropriate.

Total I	Marks
	40

- 2
- 1 P, Q, R and S are pieces of apparatus.

Which row describes the correct apparatus for the measurement made?

	apparatus	measurement made	
Α	Р	the volume of acid added to alkali in a titration	
в	Q	0.24 dm ³ of hydrogen gas produced when magnesium reacts with an acid	
с	R	75 cm ³ of a gas given off in a rate-determining experiment	
D	S	20 cm ³ of alkali for use in a titration	

2 X is a mixture of colourless compounds. The diagram shows a chromatogram of X and of three pure compounds, P, Q and R.

Which statement is **not** correct?

- **A** X could contain P and R.
- **B** Q has a greater $R_{\rm f}$ value than R.
- **C** P and R have different solubilities in the solvent.
- **D** A locating agent was used to develop the chromatogram of X.

3 Which substance can be distilled using the apparatus below?

	melting point/ °C	boiling point/ °C
A –138		0
в	-123	50
С	0	108
D	41	182

4 Which row about a change of state is correct?

	change of state	energy change	process
Α	solid \rightarrow liquid	heat given out	melting
В	gas \rightarrow liquid	heat taken in	evaporation
С	solid \rightarrow gas	heat taken in	sublimation
D	liquid \rightarrow solid	heat given out	condensing

5 The cooling curve for substance **X** is shown below.

At which temperature does both solid and liquid exist?

- **A** 0 °C
- **B** 50 °C
- **C** 150 °C
- **D** 200 °C
- 6 The ion of an element **Z** is shown below.

In which group and period does element Z belong to in the Periodic Table?

	group	period
Α	13	2
В	13	3
С	15	2
D	15	3

- 7 Which row includes an element, a compound and a mixture?
 - A sea water, tap water, pure water
 - **B** sodium chloride, chlorine, pure water
 - **C** sea water, sodium chloride, chlorine
 - D sodium chloride, sea water, pure water

8 Which row correctly classifies how graphite, aluminium and molten sodium chloride conduct electricity?

	using mobile ions and electrons	using mobile electrons only	using mobile ions only
Α	molten sodium chloride	graphite	aluminium
В	molten sodium chloride	aluminium, graphite	none of the above
с	aluminium	graphite	molten sodium chloride
D	none of the above	aluminium, graphite	molten sodium chloride

В

D

9 Which dot and cross diagram for a compound of oxygen and chlorine is correct?

С

- 10 Which statement about the structure and properties of silicon(IV) oxide is not correct?
 - A It has a giant covalent structure similar to that of diamond.
 - **B** There are strong covalent bonds between silicon and oxygen atoms.
 - **C** Each silicon atom is bonded to four neighbouring oxygen atoms.
 - **D** It has a high melting point due to the strong attractive force between molecules.

- **11** What is the number of molecules in 500 cm³ of oxygen gas at room temperature and pressure?
 - **A** 1.25×10^{22}
 - **B** 1.34 × 10²²
 - **C** 3.0×10^{22}
 - **D** 3.0×10^{26}
- **12** The percentage by mass of magnesium in chlorophyll-a ($M_r = 893$) is 2.69%.

How many magnesium atoms are there in one molecule of chlorophyll-a?

- **A** 1
- **B** 2
- **C** 24
- **D** 100
- **13** Saline solution is a solution of sodium chloride dissolved in water. It is commonly used in hospitals for cleaning wounds and treating dehydration.

A 0.9% saline solution has 0.9 g of sodium chloride for every 100 cm³ of solution.

What is the concentration of the 0.9% saline solution in mol/dm³?

- **A** 0.00154 mol/dm³
- **B** 0.0154 mol/dm³
- **C** 0.154 mol/dm³
- **D** 1.54 mol/dm³
- **14** A mixture containing 8.0 g of hydrogen gas with 8.0 g of oxygen gas is ignited.

The reaction is represented by the following chemical equation.

$$2 H_2(g) + O_2(g) \rightarrow 2 H_2O(l)$$

What is the mass of water formed?

- **A** 9.0 g
- **B** 16.0 g
- **C** 18.0 g
- **D** 36.0 g

15 The diagram shows the results of a pH test on a sample of garden soil.

What could be added to the soil to change its pH to 7?

- A calcium oxide
- **B** sodium oxide
- **C** sodium chloride
- D ammonium nitrate
- **16** The graph shows how pH changes as 0.1 mol/dm³ of dilute sodium hydroxide is gradually added to 0.1 mol/dm³ of ethanoic acid.

Which indicator is most suitable to be used in the titration to identify the end-point of neutralisation?

	indicator	colour change	pH at which colour change occurs
Α	crystal violet	yellow \rightarrow violet	0.0 – 2.0
в	methyl orange	$\text{red} \rightarrow \text{yellow}$	3.1 – 4.4
С	phenolphthalein	$\text{colourless} \rightarrow \text{pink}$	8.3 – 10.0
D	indigo carmine	blue \rightarrow yellow	11.4 – 13.0

17 Copper(II) sulfate is made by reacting excess insoluble solid M and solution N.

Which row identifies M and N and the method used to extract crystals of copper(II) sulfate from the mixture?

	М	Ν	method
Α	copper	sodium sulfate	filter the mixture to obtain the residue
В	copper	sulfuric acid	filter the mixture and evaporate filtrate until crystals form
С	copper(II) oxide	sulfuric acid	filter the mixture to obtain the residue
D	copper(II) carbonate	sulfuric acid	filter the mixture and evaporate filtrate until crystals form

18 Which of the following pairs of gases changes the colour of damp red litmus paper?

- **A** ammonia and chlorine
- **B** ammonia and carbon dioxide
- **C** chlorine and hydrogen
- **D** chlorine and sulfur dioxide
- **19** The diagram shows a reaction scheme.

What is Y?

- A dilute nitric acid
- **B** dilute hydrochloric acid
- **C** aqueous sodium nitrate
- D aqueous ammonia

20 The flowchart below shows the reactions of solution X.

Which row is correct?

	formula of dirty green precipitate	reaction that resulted in red-brown precipitate
Α	Fe(OH) ₂	reduction
в	Fe(NH ₄) ₂	reduction
С	Fe(OH) ₂	oxidation
D	Fe(NH ₄) ₂	oxidation

21 In which reaction is the underlined substance acting as a reducing agent?

- $\mathbf{A} \qquad \underline{2 \text{ CuO}} + \text{C} \rightarrow \text{CO}_2 + 2 \text{ Cu}$
- $\mathbf{B} \qquad \mathsf{Fe}_2\mathsf{O}_3 + \underline{3\ \mathsf{CO}} \to 2\ \mathsf{Fe} + 3\ \mathsf{CO}_2$
- $\textbf{C} \qquad 2 \text{ Mg} + \underline{O_2} \rightarrow 2 \text{ MgO}$
- **D** $\underline{\text{MnO}}_2$ + 4 HC $l \rightarrow \text{MnC}l_2$ + 2 H₂O + C l_2
- 22 The diagram shows the electrolysis of molten lead(II) bromide.

What is seen at each electrode?

	electrode X	electrode Y
Α	brown gas	grey metal
в	colourless gas	grey metal
С	grey metal	colourless gas
D	grey metal	brown gas

23 The diagram shows an experiment to electroplate a nickel spoon with silver.

Which row correctly describes the positive electrode, the negative electrode and the electrolyte?

	positive electrode	negative electrode	electrolyte
Α	nickel spoon	pure nickel	silver nitrate solution
В	nickel spoon	pure silver	nickel nitrate solution
С	pure nickel	nickel spoon	silver nitrate solution
D	pure silver	nickel spoon	silver nitrate solution

24 The electrical energy, or voltage, of two simple cells is measured.

Which statement correctly describes the results of the experiment?

- A The voltage of cell 1 is greater than cell 2.
- **B** The electrolyte gradually turns blue in cell 2.
- **C** Electrons flow from zinc to magnesium in cell 1.
- **D** Magnesium loses electrons and undergoes oxidation in both cells.

25 Sodium and rubidium are elements in Group 1 of the Periodic Table.

Which statement is correct?

- A Sodium atoms have more electrons than rubidium atoms.
- **B** Sodium has a lower density than rubidium.
- **C** Sodium has a lower melting point than rubidium.
- **D** Sodium is more reactive than rubidium.
- **26** Elements X and Y are in Group 17 of the Periodic Table. X is a liquid at room temperature. Y is a solid at room temperature.

Which statements are correct?

- 1 Atoms of Y have more protons than atoms of X.
- 2 Molecules of Y have more atoms than molecules of X.
- 3 Y displaces X from aqueous solutions of X^- ions.
- A 1 only
- B 2 only
- C 3 only
- **D** 1, 2 and 3
- 27 The statements refer to a number of elements in the Periodic Table.
 - 1 The elements form coloured compounds.
 - 2 The elements have variable oxidation states.

For which pair of elements is each statement correct?

	form coloured compounds	have variable oxidation states
Α	Co, Mg	Fe, Al
В	Fe, V	Co, Mn
С	Co, Mn	Mg, A <i>l</i>
D	Mg, Al	Fe, V

28 Each beaker contains two strips of metal fastened together and immersed in hydrochloric acid. All the strips are of the same size.

After 5 minutes, which beaker contains the least amount of zinc ions?

29 Three metal carbonates were each heated as shown below.

On mild heating of the carbonate of \mathbf{Y} , a white precipitate formed in the limewater. Heating more strongly gave the same observation for the carbonate of \mathbf{X} but not for the carbonate of \mathbf{Z} .

What could X, Y and Z be?

	Х	Y	Z
Α	Zn	Cu	Na
в	Zn	Na	Cu
С	Na	Zn	Cu
D	Na	Cu	Zn

30 The compound hydrazine is used as a rocket fuel. It has the structural formula shown.

One of the reactions of hydrazine is shown.

$$N_2H_4(g) \rightarrow N_2(g) + 2 H_2(g)$$

	H—H	N—H	N—N	N≡N
bond energy in kJ / mol	436	390	160	945

What is the enthalpy change for this reaction?

- A _339 kJ/mol
- B _97 kJ/mol
- **C** +97 kJ/mol
- **D** +339 kJ/mol
- **31** When a hydrogen–oxygen fuel cell is in operation, a different reaction happens at each electrode.

at the hydrogen electrode: $H_2(g) \rightarrow 2 H^+(aq) + 2 e^$ at the oxygen electrode: $O_2(g) + 2 H_2O(l) + 4 e^- \rightarrow 4 OH^-(aq)$

The electrons that are lost at the hydrogen electrode travel through the external circuit to the oxygen electrode, where they are gained by the oxygen and water.

A hydrogen–oxygen fuel cell is operated for a period of time and 4 mol of oxygen molecules are consumed.

Which mass of hydrogen is consumed?

Δ	20	a
~	2.0	y

- **B** 4.0 g
- **C** 8.0 g
- **D** 16.0 g

32 25 cm³ of 1.0 mol/dm³ hydrochloric acid reacts with excess of a solid to produce a gas.

The graph labelled first experiment shows the volume of gas produced over time. Graphs P and Q show the volume of gas produced under different conditions.

Which changes in conditions produce graphs P and Q, if all other conditions are kept the same?

- A P uses a catalyst and Q has a lower temperature.
- **B** P uses 25 cm³ of more concentrated acid and Q uses smaller pieces of solid.
- **C** P uses a higher temperature and Q uses 25 cm³ of 0.5 mol/dm³ hydrochloric acid.
- **D** P uses smaller pieces of solid and Q uses larger pieces of solid.
- **33** The equation and the energy profile diagram for the reversible reaction in the Haber process are shown.

Which statement about the arrows P, Q, R and S is correct?

- A P represents the enthalpy change for the forward reaction.
- **B** Q represents the enthalpy change for both the forward and reverse reaction.
- **C** R represents the activation energy for both the forward and reverse reaction.
- **D** S represents the activation energy for the reverse reaction.

34 Petroleum (crude oil) is separated into useful fractions by fractional distillation. The positions at which fractions X and Y are collected from the fractionating column are shown.

Which statement is correct?

- **A** The temperature increases up the column.
- **B** X condenses at a lower temperature than Y.
- **C** X has a higher boiling point than Y.
- **D** X has longer chain molecules than Y.
- 35 When butene reacts with bromine in an addition reaction, which compound could be made?

- A 1 only
- B 2 only
- **C** 2 and 3 only
- **D** 1, 2 and 3

36 Which structure is not an isomer of the structure shown?

$$CH_3 - CH_2 - CH_2 - CH_3 - CH_3$$

A
$$CH_3 - CH_2 - CH - CH_3$$

 $| CH_3$

CH₂

В

С

$$CH_{3} - C - CH_{3}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{2}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{2}$$

$$CH_{3} - CH_{2} - CH_{2} - CH_{2}$$

- **37** In which chemical reaction does the named product formed have a lower molecular mass than the reactant?
 - **A** the formation of an ester from ethanol
 - **B** the formation of ethanoic acid from ethanol
 - **C** the formation of ethanol from ethene
 - D the formation of ethanol from glucose
- 38 Which bond in a molecule of propanoic acid is broken when it reacts with magnesium?
 - A C–H bond
 - **B** C–O bond
 - **C** C–C bond
 - D O–H bond

39 Molecule 1 and molecule 2 react together to make a condensation polymer.

$$H_{2}N - (CH_{2})_{6} - NH_{2}$$

$$H_{0}$$

$$H_{1}$$

$$H_{$$

What is the relative molecular mass of the repeating unit of the polymer formed from molecules **1** and **2**?

- **A** 224
- **B** 226
- **C** 244
- **D** 262
- 40 Catalytic converters in car exhausts change polluting gases into non-polluting gases.

Which statement(s) about oxides of nitrogen and car engines is/are correct?

- 1 The nitrogen in oxides of nitrogen comes from compounds in petrol.
- 2 The oxygen in oxides of nitrogen comes from the air in the car engine.
- 3 Catalytic converters convert oxides of nitrogen into nitrogen and other gases.
- A 2 only
- **B** 3 only
- **C** 1 and 2
- **D** 2 and 3

End of paper

							The Per	iodic Tal	ole of Ele	ements							
,								5	dh			;	;	ļ	ļ	!	
-	2											13	14	15	16	17	18
							. 										2
							Т										He
				Kev			hydrogen 1										helium 4
с	4		proton	i (atomic) ni	umber	-						5	9	7	8	6	10
:3	Be		atc	omic symb	ō							в	ပ	z	0	Щ	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	6		relati	ive atomic r	nass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											A <i>l</i>	Si	٩.	S	Cl	Ar
sodium 23	magnesium 24	ю	4	ъ	9	7	8	თ	10	11	12	aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	F	>	ບັ	Mn	Fe	රී	Ż	Cu	Zn	Ga	Ge	As	Se	Ъ	א ג
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	2
Rр	ي ا	≻	Z	qN	Mo	Tc	Ru	ЧЯ	ЪЧ	Ag	В	IJ	Sn	Sb	Te	Ι	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85	88	89	91	93	96	I	101	103	106	108	112	115	119	122	128	127	131
55	56	57-71	72	73	74	75	76	77	78	62	80	81	82	83	8	85	86
S	Ba	lanthanoids	Έ	Та	8	Re	S	Ir	Ŧ	Au	Рg	T1	Pb	B	Ро	At	R
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	I	I	I
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Ŀ	Ra	actinoids	Ł	Db	Sg	Bh	Hs	Mt	Ds	Rg	ы	ЧN	Fl	Mc	L L	Ts	ő
francium	radium		rutherfordium	dubnium .	seaborgium	bohrium	hassium	meitnerium (darmstadtium	roentgenium	copernicium	nihonium	flerovium	moscovium	livermorium	tennessine	oganesson
I	I		I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
		57	58	59	60	61	62	63	64	65	99	67	68	69	70	71	
lanthai	apion	La	Ce	ት	PZ	Бд	Sm	Eu	g	Tb	D	ĥ	ш	Тд	Υb	Lu	
	2020	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		139	140	141	144	I	150	152	157	159	163	165	167	169	173	175	
		89	6	91	92	93	94	95	96	97	98	66	100	101	102	103	
actine	oids	Ac	Ч	Ра	⊃	Np	Pu	Am	Сд	ă	പ്	Es	БП	рМ	No	5	
5		actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium	
		1	232	231	238	1	1	I	1	I	I	I	I	1	I	I	

The volume of one mole of any gas is 24 dm^3 at room temperature and pressure (r.t.p.).

The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$