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1 A curve C has equation  lny px qx rx   , where p , q  and r  are constants. Given that C 

crosses the x -axis at the points where 1x  , 2x   and 5x  , find the values of p , q  and r , 

giving your answers correct to 3 decimal places.  [4] 
 
 

2 By expressing 
  
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3 2

x

x x




 
 as a single simplified fraction, solve exactly the inequality 

  
3 7
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x
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.  [3] 

 Hence, solve exactly the inequality 
  
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 
. [2] 

 
 

3 It is given that 
 1

1 1
1

1 1

n

r r r n

 
  . 

(a) Find 
 

1

5

1

1

n

r r r



  . [3] 

(b) Give a reason why the series in part (a) is convergent and state the value of 
 5

1

1r r r



  . [2] 

 
 

4 A curve C  has equation 
2 4 4

1

x x
y

x

 



.  

(a) Sketch C , stating clearly the equations of any asymptotes, coordinates of turning points and 
points of intersection with the axes.  [3] 

(b) By drawing a suitable graph on the same diagram in part (a), find the range of values of b , 

where 0b  , such that the equation  
22
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2

1 4 4
2 1 4

1

x x
x

b x

  
     

 has no real roots.   [3] 

 
 
5 Differentiate each of the following expressions with respect to x . 

 (a) 31tan 2 x    [3] 

 (b) ln
1

x

x

 
  

  [3] 
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6 It is given that  sin e 1xy   . 

(a) Show that 
2

2
2

d d
e

d d
xy y

y
x x

  . [3] 

(b) Hence, find the Maclaurin series of y, up to and including the term in 2x . [2] 
(c) Using the Maclaurin series found in part (b), determine the series expansion of 

 1 sin e 1x  , up to and including the term in 2x . [2] 

 
 
7 (a)  Three non-zero vectors p , q  and r  are such that 3p×q = r ×p . 

  Find a linear relationship between  p , q  and r .          [3] 

 
(b) Referred to the origin O , the points A  and B  have position vectors a  and b .  

It is given that a  and b  are non-parallel unit vectors.  
The point B  divides AC  in the ratio 1:3 . 
The point D  lies on OB  produced such that : 1:OB OD m , where , 2m m  .  

 Given that AB


 is perpendicular to CD


, find the numerical value of m .                  [4] 
 
 
8 (a) An arithmetic sequence has first term a  and common difference 0.5, where a  is an integer. 

Find the smallest value of a  such that the sum of the first 36 terms is at least 500.  [3] 
  

 (b) A sequence 0 1 2,  ,  ,  u u u   is given by 

 

0 400u   and 11.01n nu u x   for 1n  , where x is an integer. 

(i) Show that    1.01 400 100 1.01 1n n
nu x   .  [3] 

(ii) Given that 16x   and 1.01 ky u , where 0 16y  , find the value of k  and y . [4] 
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9 (a) Express 24 8 4x x   in the form of  2
A x B  where A  and B  are constants to be 

determined.                 [1] 
 Hence or otherwise, state a sequence of transformations that would transform the curve with 

equation 
2

3exy  onto the curve with equation 
24 8 43e 10x xy    .  [3] 

 
 (b)    
 
 
 
 
  
 
 
 
 
 
 
 
 

The diagram shows the curve  fy x .  The curve has a turning point at  6, 5  and crosses 

the x -axis at  4, 0  and  0, 0 . The lines 2y    and 3x    are the asymptotes to the 

curve.   
  
  On separate diagrams, sketch the graphs of  

(i)  3 fy x , [2] 

(ii) 
 
1

,
f

y
x

   [3] 

(iii)  f ' ,y x   [3] 

 labelling clearly the equation(s) of any asymptote(s), coordinates of any axial intercept(s) and 
turning point(s) where applicable. 

 

y 

3x    

2y    

(6, 5)  

( 4, 0)  
O 

x 

 fy x  
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10  
 
 
 
 
 
 
 
 
 

 

A cone-shaped cup is made of paper of negligible thickness to hold 320π cm  of liquid.  The open 
inverted cone has radius r  cm and height h  cm as shown in the diagram above.  

The external surface area of the cup is denoted by 2 cmA . The manufacturer wants to reduce the 
cost of production by minimizing the value of A .   
(a) Find h  in terms of r .  [1] 

(b) By considering 2A  or otherwise, show that 2 3
3

d 3600
π 2

d

A
A r

r r
   
 

.  [3] 

(c) Find the exact value of r that gives the minimum value of A , proving that A  is a minimum.  

 Find also the ratio of the radius to the height, 
r

h
, giving your answer in terms of 2k , where  

         k  is a constant to be determined.  [5] 
  

 The manufacturer decides to make paper cups at minimum external surface area using the ratio 
r

h
 

found in part (c).  
 (d) The cup is being filled completely with water. However, there is a small hole at the bottom of 

the cup that causes water to leak out at the rate of 33 cm  per second. Find the rate of decrease 
of the depth of the water at the instant when the depth is 2 cm .  [3] 

 

[It is given that the volume of a circular cone with base radius r  and height h  is 21
π

3
r h  and the 

curved surface area is πrl , where l  is the slant height of the cone.] 

 

 r 

h 
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11 A function h  is self-inverse if    1h hx x  for all x  in the domain of h . 

 
 The functions f  and g  are defined by  

      1
f 2 , for , 2

2
x x x

x
   


  

     
 2

3 1 for 1,
g =

1 2 for 1.

x x
x

x x

 


  
  

(a) Sketch the graph of  fy x . With the aid of your graph, explain why f  has an inverse.  [2] 

(b) Show that f is self-inverse and find  2f x . [4] 

(c) Hence, or otherwise, evaluate  2025f 4 . [2] 

(d) Find an expression for gf  and state its domain. [3] 

(e) Find the range of gf .  [2] 

 
 
12 The diagram below shows a triangular base pyramid with vertices, A , B ,  C  and D . With 

reference to the origin O , the points A , B , C  and D  are 2 3 i j k , 2 4 i j k , 4 5 i j k  and 

2 5 i k  respectively. Let the plane containing points A , B  and C  be represented by  .  

 

(a) Show that the equation of   can be expressed as 

9

7

12


 
   
 
 

r  , where   is a constant to be 

determined.   [3] 
(b) Find the acute angle between line BD  and  .  [2] 

(c) Find the position vector of the foot of perpendicular from the point D  to  .    [4] 

(d) Find the area of triangle ABC . Hence find the volume of the pyramid.  [4] 

 [Volume of pyramid 
1

base area height
3

   ] 

 
 
 
 
 
 
 

A 

B 

C 

D 
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