2021 PHSS Prelim AMATH Paper 2 Solutions

Q	SOLUTIONS	MARK	REMARKS
1	Express $\frac{1-2x^2+x^3}{x^3+3x}$ in partial fractions.		
	Express $\frac{1}{x^3 + 3x}$ in partial fractions.		
	$\frac{x^{2} + 5x}{\frac{1 - 2x^{2} + x^{3}}{x^{3} + 3x}} = 1 + \frac{1 - 3x - 2x^{2}}{\frac{x^{3} + 3x}{x^{3} + 3x}}$ $\frac{1 - 3x - 2x^{2}}{\frac{x^{3} + 3x}{x^{3} + 3x}} = \frac{1 - 3x - 2x^{2}}{x(x^{2} + 3)}$		
	$\frac{1}{x^3+3x}$ x^3+3x		
	$\frac{1-3x-2x^2}{2} - \frac{1-3x-2x^2}{2}$		
	$x^3 + 3x - x(x^2 + 3)$		
	$\frac{1-3x-2x^2}{x(x^2+3)} = \frac{A}{x} + \frac{Bx+C}{x^2+3}$		
	$x(x^2+3) = x + x^2 + 3$		
	$1 - 3x - 2x^2 = A(x^2 + 3) + (Bx + C)x$		
	Sub <i>x</i> =0, $A = \frac{1}{3}$		
	Sub x=0, $A = \frac{1}{3}$ Sub $A = \frac{1}{3}$,		
	$3 - 9x - 6x^2 = x^2 + 3 + 3Bx^2 + 3Cx$		
	Comparing coefficients of x^2 ,		
	-6 = 1 + 3B		
	$B = -\frac{7}{3}$ $C = -3$		
	C = -3		
	$1-2r^2+r^3$ 1 $7r+9$		
	$\frac{1-2x^2+x^3}{x^3+3x} = 1 + \frac{1}{3x} - \frac{7x+9}{3(x^2+3)}$		
2i	Explain clearly how N_0 and b can be calculated when a straight line		
	graph of $\ln N$ against t is drawn.		
	$\frac{N}{N} = e^{bt}$		
	N ₀		
	$N = N_0 e^{bt}$		
	$\ln N = \ln(N_0 e^{bt})$		
	$\ln N = \ln N_0 + \ln e^{bt}$		
	$\ln N = \ln N_0 + bt$		
	Gradient = b		
	Intercept = $\ln N_0$		
	Convert logarithmic to exponential form/		
	Solve logarithmic equation to find N_0		

ii							
		t	2	4	6	8	10
		ln N	4.19	5.09	5.99	6.89	7.79
	10 - y						
	9						
	8						
	7						
	6						
	5						
	5		<u></u>				
	2						
	1						
	0 1	2 3	4 5	6	7	8 9	10
2iii	Use your gra	aph to estir	nate the	values	of N_0 a	nd of b	•
	$\ln N_0 = 3.29$	(±0.05)					
	$N_0 = 26.8$						
	$b = 0.5 (\pm 0.)$	1)					
iv	A state of en						
	of the virus i announceme						
	clearly if this		ren une	. 15 110	aib. Ub	₅ you	- 5rap
	$\ln(5000) = 8$						
	From graph,						
	The state of		will be	annour	nced be	tween 1	l 1 th an
	The rumours	s are false.					
2v	The World	Health O	rganisati	on (WF	IO) upc	lated th	e healt
•	and sugges						
	by the equa						
	constants.						
	The new st	traight line	graph o	f ln N	against	t has a	$\ln N$ -
	180.16.	1 6	N 7				
	Find the new	v value of	<i>I</i> V ₀ .				

	$3\ln N - 150 = 6N_o + 2bt$	
	$\ln N - 50 = 2N_o + \frac{2bt}{3}$	
	Intercept = $50 + 2N_0$	
	$N_0 = \frac{180.16 - 50}{2}$	
	$N_0 = 65.08$	
	$\frac{OR}{3\ln N - 150}$	
	Sub $t = 0$, $N_o = \frac{3\ln N - 150}{6}$	
	$N_0 = 65.08$	
3	The diagram shows part of the curve $y = \sqrt{3+2x}$, meeting the tangent at <i>P</i> , where $x = 3$.	
3i	Find the equation of the tangent.	
	$y = \sqrt{3 + 2x}$	
	$\frac{dy}{dx} = \frac{1}{2} (3 + 2x)^{-\frac{1}{2}} (2)$	
	$y = \sqrt{3 + 2x}$ $\frac{dy}{dx} = \frac{1}{2} (3 + 2x)^{-\frac{1}{2}} (2)$ $\frac{dy}{dx} = (3 + 2x)^{-\frac{1}{2}}$	
	At <i>P</i> , gradient of tangent, $\left. \frac{dy}{dx} \right _{x=3} = \frac{1}{3}$	
	At $P, y = 3$	
	Equation of the tangent is $y = \frac{1}{3}x + 2$	
3ii	The area hounded by DO the line of 2 and the line of a size of a 24	
511	The area bounded by <i>PQ</i> , the line $x = 3$ and the line $x = a$ is given as 24 units ² .	
	Show that $a = 9$.	
	Area under line $PQ \implies \frac{1}{2} \left[3 + \left(\frac{a}{3} + 2 \right) \right] (a-3) = 24$	
	OR	
	$\left[\frac{x^2}{(3)(2)} + 2x\right]_3^a = 24$	
	2 10 100 0	
	$a^{2} + 12a - 189 = 0$ (a + 21)(a - 0) = 0	
	(a+21)(a-9) = 0	

	$a = 9 \ (a \neq -21)$	
3iii	Find the area of the shaded region bounded by PQ , the curve and the line $x = a$.	
	Area under the curve PQ = $\int_{3}^{9} \sqrt{3+2x} dx$	
	$= \left[\frac{(3+2x)^{\frac{3}{2}}}{\left(\frac{3}{2}\right)(2)}\right]_{3}^{9}$ $= \frac{1}{3}\left[(21)^{\frac{3}{2}} - (9)^{\frac{3}{2}}\right]$	
	$=\frac{1}{3}\left[(21)^{\frac{3}{2}}-(9)^{\frac{3}{2}}\right]$	
	Shaded region = $24 - \frac{1}{3} \left[(21)^{\frac{3}{2}} - (9)^{\frac{3}{2}} \right]$	
	0.922 units ²	
4 -		
4a	A curve has equation $y - (k+1) = \frac{2}{x}$ and a line has equation $y + 1 = kx$,	
	where k is a constant. Find the set of values of k for which the curve meets the line.	
	$\frac{2}{x} + (k+1) = kx - 1$ 2+(k+1)x = kx ² - x	
	$2 + (k+1)x = kx^2 - x$	
	$kx^2 - (k+2)x - 2 = 0$	
	$\left[-(k+2)\right]^2 - 4(k)(-2) \ge 0$	
	$k^2 + 4k + 4 + 8k \ge 0$	
	$k^2 + 12k + 4 \ge 0$	
	At $k^2 + 12k + 4 = 0$	
	$k = \frac{-12 \pm \sqrt{12^2 - 4(1)(4)}}{2}$	
	$k = -6 \pm \sqrt{32}$	
	$k \le -6 - \sqrt{32}$ or $k \ge -6 + \sqrt{32}$	

4b	The height above the ground, in metres, of the rooftop of a building is modelled as $P(x) = -x^2 + 6x + 11$, where x is the horizontal distance from the main office. The rooftop in the neighbouring school is modelled by $R(x) = 17 - x$. Find the values of x, in metres, for which the rooftop of the building is above that of the school.		
	$-x^{2} + 6x + 11 > 17 - x$ $x^{2} - 7x + 6 < 0$		
	$x^2 - 7x + 6 < 0$		
	(x-1)(x-6) < 0		
	1 < <i>x</i> < 6		
4c	The curve with equation $y = (a+1)x^2 + bx + 2 + b$, where <i>a</i> and <i>b</i> are constants, is always above the <i>x</i> -axis. Write down two conditions which apply to <i>a</i> and <i>b</i> .		
	a > -1		
	$b^2 - 4(a+1)(2+b) < 0$		<u></u>
5a	Express $\frac{2x}{2x-3}$ in the form $a + \frac{b}{2x-3}$ where <i>a</i> and <i>b</i> are constants. Hence, $\int \frac{2x}{2x-3} dx$.		
	$\frac{2x-3+3}{2x-3} = 1 + \frac{3}{2x-3}$		
	$\int 1 + \frac{3}{2x - 3} \mathrm{d}x = x + \frac{3}{2} \ln(2x - 3) + C_1$		
5b	Differentiate $\frac{x \ln(2x-3)}{2}$ with respect to <i>x</i> .		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left[\frac{x\ln\left(2x-3\right)}{2}\right] = \frac{\ln(2x-3)}{2} + \frac{x}{2} \times \frac{1}{2x-3} \times 2$		
	$=\frac{\ln(2x-3)}{2} + \frac{x}{2x-3}$		
5c	$2\ln(2\pi - 2)$		
50	Using the results from (a) and (b), find $\int \frac{2\ln(2x-3)}{3} dx$.		
	From (b),		

		1
	$\int \frac{\ln(2x-3)}{2} + \frac{x}{2x-3} dx = \frac{x\ln(2x-3)}{2} + C_2$	
	$\int \frac{\ln(2x-3)}{2} dx = \frac{x \ln(2x-3)}{2} - \int \frac{x}{2x-3} dx + C_2$	
	$\int \frac{2\ln(2x-3)}{3} dx = \frac{4}{3} \left[\frac{x\ln(2x-3)}{2} \right] - \frac{4}{3} \int \frac{x}{2x-3} dx + C_3$	
	From (a), $\int \frac{2x}{2x-3} dx = x + \frac{3}{2} \ln(2x-3) + C_1$	
	$\int \frac{2x}{2x-3} dx = x + \frac{3}{2} \ln(2x-3) + C_1$ $\frac{2}{3} \int \frac{2x}{2x-3} dx = \frac{2x}{3} + \ln(2x-3) + C_4$	
	From (a) and (b),	
	$\int \frac{2\ln(2x-3)}{3} dx = \frac{2x\ln(2x-3)}{3} - \frac{2x}{3} - \ln(2x-3) + C_5$	
6i	A guide brings her visitors to walk along a trail consisting of pathways	
	A guide offings lief visitors to wark along a train consisting of partways AB, BM, MC and CB . Show that T m, the distance of the trail, can be expressed in the form $T = 720 + 360 \sin \theta + 360 \cos \theta$.	
	ABC is an isosceles triangle.Perpendicular (90°) from B to M, the midpoint of AC.	
	$\cos\theta = \frac{CM}{360}$	
	$CM = 360\cos\theta$	
	PM	
	$\sin\theta = \frac{BM}{360}$	
	$BM = 360 \sin \theta$	
	Total distance = $720 + 360 \sin \theta + 360 \cos \theta$	
6ii	Express T in the form $p + R\sin(\theta + \alpha)$, where $R > 0$ and α is an acute	
	angle.	
	$T = 720 + R\sin(\theta + \alpha)$	
	$R = \sqrt{360^2 + 360^2}$	
	$=\sqrt{259200}$	
	$= 360\sqrt{2}$	
	260	
	$\tan \alpha = \frac{360}{360} = 1$	
L	500	

	$\alpha = 45^{\circ}$		
	<i>u</i> – 1 5		
	$T = 720 + 360\sqrt{2}\sin(\theta + 45^{\circ})$		
6iii	Given that the trail in (i) is 1.2 km, find the value of θ .		
	$720 + 360\sqrt{2}\sin(\theta + 45^{\circ}) = 1200$		
	$\sin(\theta + 45^{\circ}) = \frac{480}{360\sqrt{2}}$		
	$360\sqrt{2}$		
	$\theta + 45^{\circ} = 70.5287^{\circ}$		
	$\theta = 25.5^{\circ}$		
7			
/	The equation of a curve is $y = e^{3x-2x^2}$.		
7a	$dy = d^2y$		
<i>,</i> u	Find expressions for $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.		
	dx dx		
	$dy = 2r_1^2 2r_2^2$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = e^{3x-2x^2} \times (3-4x)$		
	$d^2 y = \frac{3x-2x^2}{2} \cdot (-4) + \frac{3x-2x^2}{2} \cdot (-2) \cdot (-2) \cdot (-2) \cdot (-2)$		
	$\frac{1}{\mathrm{d}x^2} = e \qquad \times (-4) + e \qquad \times (3 - 4x) \times (3 - 4x)$		
	$\frac{d^2 y}{dx^2} = e^{3x-2x^2} \times (-4) + e^{3x-2x^2} \times (3-4x) \times (3-4x)$ $\frac{d^2 y}{dx^2} = -4e^{3x-2x^2} + e^{3x-2x^2} \times (3-4x)^2$		
	$\frac{1}{\mathrm{d}x^2} = -4e^{-x} + e^{-x} \times (3-4x)$		
7b	Find the exact value of the coordinates of the stationary point.		
	$e^{3x-2x^2} \times (3-4x) = 0$		
	$(3-4x) = 0 \Longrightarrow x = \frac{3}{4}$		
	(****)*********************************		
	2.22		
	Reject $e^{3x-2x^2} = 0$		
	9		
	If $x = \frac{3}{4}$, $y = e^{\frac{9}{8}}$		
	4		
7c	Find the nature of the stationary point.		
	The the nature of the stationary point.		
L		1	1

	If $x = \frac{3}{4}$, $\frac{d^2 y}{dx^2} = -4e^{\frac{9}{8}}$		
	This is always negative . Therefore, it is a maximum turning point.		
8	A circle, C_1 , has a diameter AB where A is the point (-1, 1) and the tangent at B is the line $3y - 4x + 43 = 0$.		
8i	Find the equation of the diameter AB and hence the coordinates of B .		
	Gradient of diameter = $-\frac{3}{4}$		
	$y = -\frac{3}{4}x + c$		
	Equation of the diameter <i>AB</i> is $y = -\frac{3}{4}x + \frac{1}{4}$		
	Point of intersection, $B: 3\left(-\frac{3}{4}x+\frac{1}{4}\right)-4x+43=0$		
	$-\frac{25}{4}x = -\frac{175}{4}$		
	Coordinates of <i>B</i> is $(7, -5)$		
8ii	Find the equation of the circle, C_1 .		
	Centre of $C_{I} = \left(\frac{-1+7}{2}, \frac{1-5}{2}\right)$		
	(3,-2)		
	$P_{1} = \frac{1}{2} \frac{1}$		
	Radius = $\sqrt{(3-(-1))^2 + (-2-1)^2} = 5$ units		
	Equation is $(x-3)^2 + (y+2)^2 = 25$		
8iii	A second circle, C_2 , has equation $x^2 + y^2 - x + 4y = 12$.		
	Find the coordinates of the centre and the radius of C_2 ,		
	$Centre = \left(\frac{1}{2}, -2\right)$		
	Radius = $\sqrt{\left(-\frac{1}{2}\right)^2 + (2)^2 - (-12)}$		
L		L	1

			· · · · · · · · · · · · · · · · · · ·
	65 .		
	$=\sqrt{\frac{65}{4}}$ units		
	V 4		
8iv	Explain if the circle C_2 lies entirely within the circle C_1 .		
	Both centre lie on the same horizontal line.		
	Bour centre ne on the same norizontal line.		
	Radius is 5 units, so $(3-5, -2)$.		
	$(-2, -2)$ lies on the circumference of C_1		
	Similarly, $\left(\frac{1}{2} - \sqrt{\frac{65}{4}}, -2\right)$ lies on the circumference of C_2		
	1 65		
	Since $\frac{1}{2} - \sqrt{\frac{65}{4}}$ on the circumference of C_2 is out of circle C_1 , C_2 cannot		
	lie entirely within C_1 .		
9a	Use the substitution of $U = 3^x$ to solve the equation $2(3^{2x}) - 3^{x+1} = 5$.		
	-550 the substitution of -5 to solve the equation $2(5^{\circ})^{\circ} = 5^{\circ}$.		
	$2(U^2) - 3U - 5 = 0$		
	(U+1)(2U-5) = 0		
	$U = \frac{5}{2}$ or $U = -1$ (no solution)		
	5		
	$3^x = \frac{5}{2}$		
	2		
	x = 0.834		
9b	Solve the equation $\log_2 x - \log_4 2 = \log_x 8$.		
	1 1 0		
	$\log_2 x - \frac{1}{\log_2 4} = \frac{\log_2 8}{\log_2 x}$		
	$\log_2 x$ $\log_2 4$ $\log_2 x$		
	Let $X = \log_2 x$		
	$X - \frac{1}{2} = \frac{3}{X}$		
	$X - \frac{1}{2} = \frac{1}{N}$		
	$2X^2 - X - 6 = 0$		
	(2X+3)(X-2) = 0		
	$\log r = \frac{3}{\log r} = 2$		
	$\log_2 x = -\frac{3}{2}$ or $\log_2 x = 2$		
	x = 0.354 or 4		

9c	Explain why $lg(x+1)+lg(x-2) = lg(x-5)$ has no real solution.	
	(x+1)(x-2) = (x-5)	
	$x^2 - 2x + 3 = 0$	
	Discriminant = -8 (<0)	
	Discriminant is negative. Hence, the equation has no solution.	