

TEMASEK JUNIOR COLLEGE, SINGAPORE

Preliminary Examination 2014 Higher 2

MATHEMATICS Paper 2

9740/02

3 hours

15 September 2014

Additional Materials:

Answer Paper List of Formulae (MF 15)

READ THESE INSTRUCTIONS FIRST

Write your *Civics Group* and *Name* on all the work that you hand in.Write in dark blue or black pen on both sides of the paper.You may use a soft pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer **all** the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use a graphic calculator.

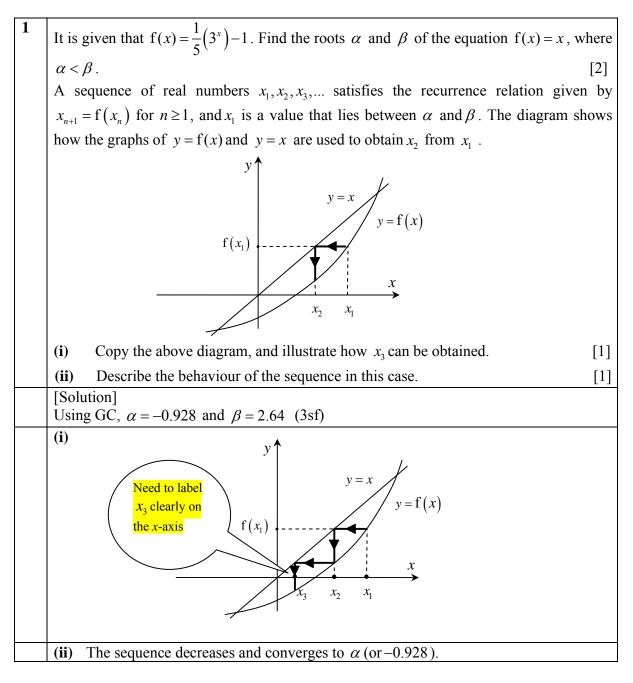
Unsupported answers from a graphic calculator are allowed unless a question specifically states otherwise.

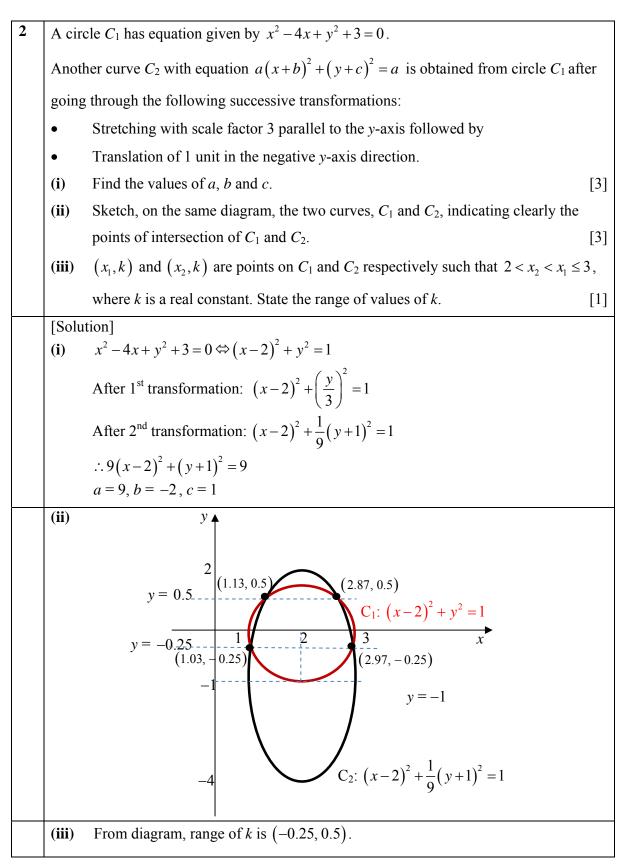
Where unsupported answers from a graphic calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands. You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 6 printed pages.

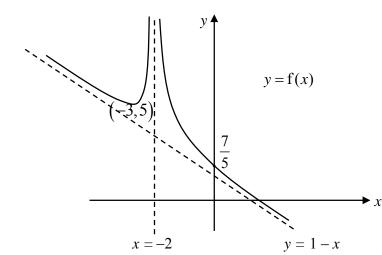

TEMASEK JUNIOR COLLEGE, SINGAPORE PASSION PURPOSE DRIVE



[Turn over

© TJC/Prelim Exam 2014/MA H2 9740

Section A: Pure Mathematics [40 marks]



3 A curve has equation y = f(x), where

$$f(x) = \begin{cases} \frac{ax^2 + bx + c}{x+2} \text{ for } x < -2, \\ h(x) & \text{ for } x > -2. \end{cases}$$

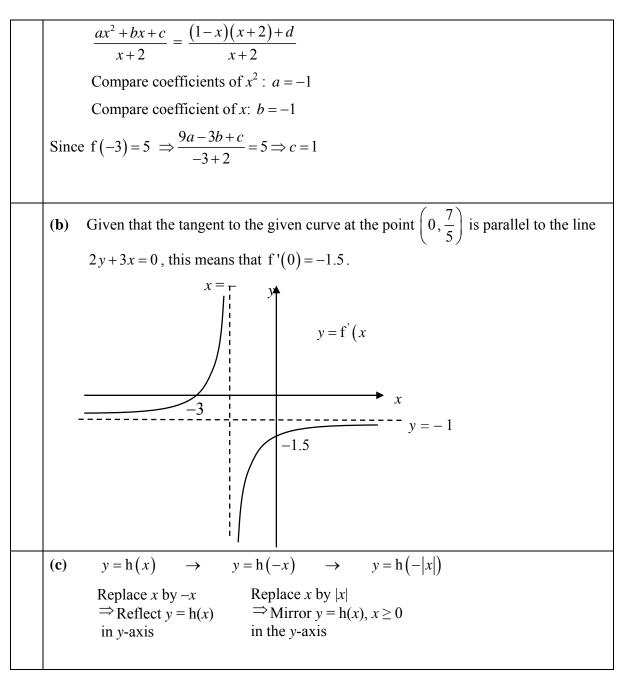
The curve has a turning point at (-3, 5). The only asymptotes are y = 1 - x and x = -2.

(a) Find the values of a, b and c.

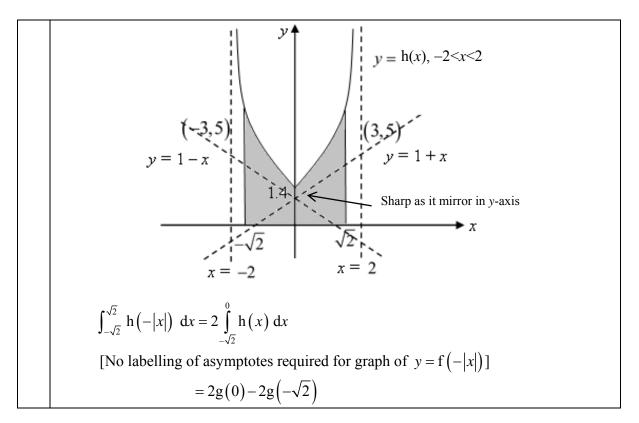
[3]

- (b) It is given that the tangent to the curve y = f(x) at the point $\left(0, \frac{7}{5}\right)$ is parallel to the line 2y + 3x = 0. Sketch the graph of y = f'(x), indicating clearly all asymptotes and axial intercepts. [3]
- (c) The function g is such that $\int h(x) dx = g(x) + k$ for x > -2, where k is an arbitrary constant. By sketching the graph of y = h(-|x|) for -2 < x < 2, express

$$\int_{-\sqrt{2}}^{\sqrt{2}} \mathbf{h}(-|x|) \, \mathrm{d}x$$

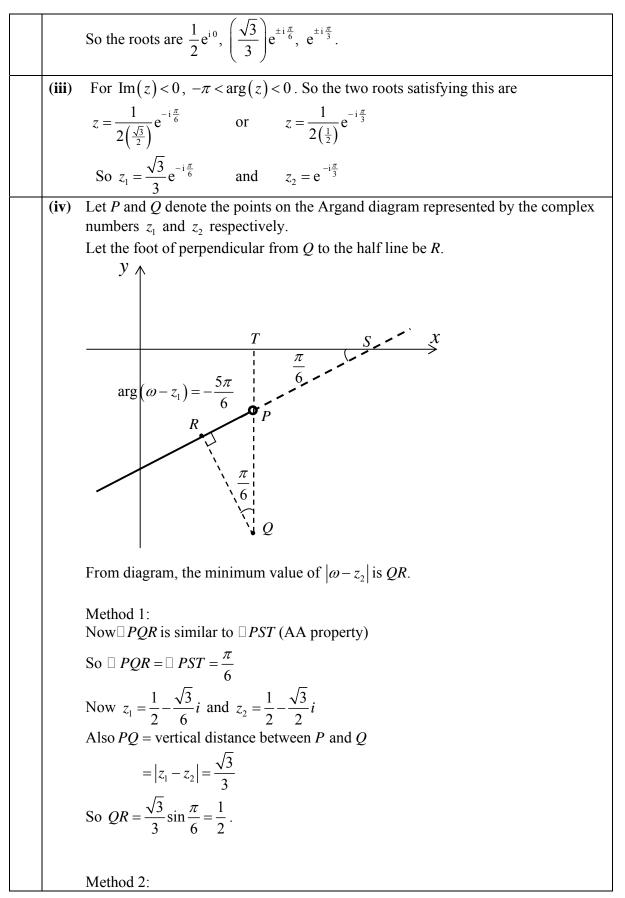

in the form pg(u) + qg(v), where p,q,u,v are constants to be determined. [3]

[Solution]


(a) Given
$$f(x) = \frac{ax^2 + bx + c}{x+2}$$
 for $x < 2$

Since oblique asymptote is y = 1 - x,

let
$$\frac{ax^2 + bx + c}{x+2} = 1 - x + \frac{d}{x+2}$$


5

4 The parametric equations of a curve C are given by $x = \sin \theta - \cos \theta$ and $y = \sec 2\theta$ where $\frac{5\pi}{12} \le \theta \le \frac{\pi}{2}$. Sketch the curve C, indicating the coordinates of the endpoints clearly. [2] (i) Show that the area of the region bounded by the curve C, x-axis and the lines **(ii)** $x = \frac{\sqrt{2}}{2}$ and x = 1 can be written as $\int_{\frac{5\pi}{12}}^{\frac{\pi}{2}} \frac{1}{\sin \theta - \cos \theta} d\theta$. [3] Prove that $\sin \theta - \cos \theta = \sqrt{2} \sin \left(\theta - \frac{\pi}{4} \right)$. (iii) [1] Hence show that the exact area of the region is $\frac{\sqrt{2}}{2} \ln(\sqrt{2}-1)(\sqrt{3}+2)$. [3] [Solution] у (i) → (1, -1) $= -\int_{\frac{\sqrt{2}}{2}}^{1} y \, dx = -\int_{\frac{5\pi}{12}}^{\frac{\pi}{2}} \sec 2\theta (\cos \theta + \sin \theta) \, d\theta$ Required area **(ii)** $= -\int_{5\pi}^{\frac{\pi}{2}} \frac{\cos\theta + \sin\theta}{\cos^2\theta - \sin^2\theta} \,\mathrm{d}\theta$

$$= -\frac{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos\theta + \sin\theta}{(\cos\theta + \sin\theta)(\cos\theta - \sin\theta)} d\theta}{\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sin\theta - \cos\theta} d\theta \quad [\text{Shown}]}$$
(iii) RHS = $\sqrt{2} \sin\left(\theta - \frac{\pi}{4}\right)$
= $\sqrt{2}\left(\sin\theta\cos\frac{\pi}{4} - \cos\theta\sin\frac{\pi}{4}\right)$
= $\sin\theta - \cos\theta$
= 1.HS
(iv) Hence required area = $\int_{\frac{5\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sin\theta - \cos\theta} d\theta$
= $\frac{\int_{\frac{5\pi}{2}}^{\frac{\pi}{2}} \frac{1}{\sqrt{2}\sin\left(\theta - \frac{\pi}{4}\right)} d\theta$
= $\frac{\sqrt{2}}{2} \int_{\frac{5\pi}{2}}^{\frac{\pi}{2}} \cscc\left(\theta - \frac{\pi}{4}\right) d\theta$
= $\frac{\sqrt{2}}{2} \left[-\ln\left(\cscc\left(\theta - \frac{\pi}{4}\right) + \cot\left(\theta - \frac{\pi}{4}\right)\right) \right]_{\frac{1\pi}{12}}^{\frac{\pi}{2}}$
= $\frac{\sqrt{2}}{2} \left[-\ln\left(\cscc\left(\frac{\pi}{4}\right) + \cot\left(\frac{\pi}{4}\right)\right) + \ln\left(\csc\left(\frac{\pi}{6}\right) + \cot\left(\frac{\pi}{6}\right)\right) \right]$
= $\frac{\sqrt{2}}{2} \left[-\ln\left(\sqrt{2} + 1\right) + \ln\left(2 + \sqrt{3}\right) \right] = \frac{\sqrt{2}}{2} \ln\left[\frac{(2 + \sqrt{3})(\sqrt{2} - 1)}{(\sqrt{2} + 1)(\sqrt{2} - 1)} \right]$

	-		
5	(i)	Show that $1 + e^{i\theta} = \left(2\cos\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$.	[2]
	(ii)	Solve the equation $(1-z)^6 - z^6 = 0$, giving the complex number z in the form	n of
		$re^{i\theta}$, where $r > 0$ and $-\pi < \theta \le \pi$.	[4]
	(iii)	Two of the roots are such that $\text{Im}(z) < 0$. One of these roots is $z_1 = \frac{\sqrt{3}}{3} e^{-i\frac{\pi}{6}}$.	
		State the other root z_2 .	[1]
	(iv)	Given that ω is the complex number such that $\arg(\omega - z_1) = -\frac{5\pi}{6}$, find	the
		minimum value of $ \omega - z_2 $.	[4]
	[Sol	ution]	
	(i)	$RHS = \left(2\cos\frac{\theta}{2}\right)e^{i\frac{\theta}{2}}$	
		$= \left(2\cos\frac{\theta}{2}\right) \left(\cos\frac{\theta}{2} + i\sin\frac{\theta}{2}\right)$	
		$= 2\cos^2\frac{\theta}{2} + i2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$	
		$=1 + \cos \theta + i \sin \theta$ (Using Double Angle formulae)	
		$=1+e^{i\theta}$	
		= LHS	
	(ii)	$(1-z)^6 - z^6 = 0$	
		$\implies \left(\frac{1-z}{z}\right)^6 = 1$	
		$\Rightarrow \left(\frac{1}{z} - 1\right)^6 = 1$	
		$\Rightarrow \frac{1}{7} - 1 = e^{i\frac{2k\pi}{6}}, k = 0, \pm 1, \pm 2, 3$	
		$\Rightarrow \frac{1}{z} = 1 + e^{i\frac{k\pi}{3}} = \left(2\cos\frac{k\pi}{6}\right)e^{i\frac{k\pi}{6}} \qquad (\text{from (i)})$	
		$\Rightarrow z = \left(\frac{1}{2\cos\frac{k\pi}{6}}\right) e^{-i\frac{k\pi}{6}}, k = 0, \pm 1, \pm 2$	
		[Note: $k = 3$ is removed because $\frac{1}{z} = 0$ which is not possible.]	

Cartesian equation of half line : $y = \frac{\sqrt{3}}{3}x - \frac{\sqrt{3}}{3}$ Cartesian equation of line QR: $y = -\sqrt{3}x$ Solving simultaneously, R is $\left(\frac{1}{4}, -\frac{\sqrt{3}}{4}\right)$ So $QR = \sqrt{\left(\frac{1}{2} - \frac{1}{4}\right)^2 + \left(\frac{\sqrt{3}}{4} - \frac{\sqrt{3}}{2}\right)^2} = \frac{1}{2}$

11

Section B: Statistics [60 marks]

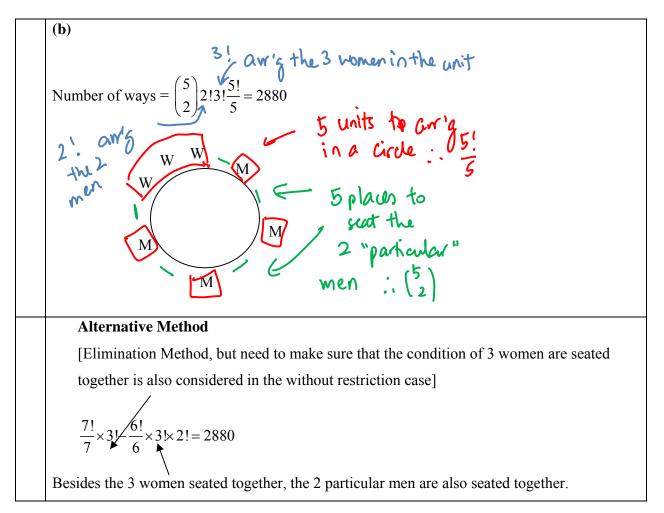
Explain what is meant by the term 'random sample'.	[1]			
The Ministry of Education wishes to conduct a focus group discussion with teacher	rs from			
primary schools, secondary schools and junior colleges to find out how they use ICT	in the			
classroom.				
Give a reason why simple random sampling may not give a representative sample of te	achers'			
feedback across different schools and levels.	[1]			
Explain why a stratified sample is more appropriate in this context.	[2]			
[Solution]				
Random sample refers to sample obtained from a sampling procedure whereby each n	nember			
the sample was selected from the population with an equal chance/probability.				
Simple random sampling does not guarantee representative sample of teachers' fee	edback			
from across schools and levels because there is always the possibility that a chosen r	andom			
sample may exclude a certain level such as all JC teachers.				
A stratified sample is preferred because the use of ICT varies with different school leve	ls			
(primary, secondary, JC) and by considering mutually exclusive subgroups (strata), it he	elps to			
ensure that the different feedbacks can be collected from teachers of these school levels	•			
Furthermore, strata are selected based on their proportionality to the teacher population	in the			
schools and levels. As such this ensures that all levels are proportionally represented.				
	primary schools, secondary schools and junior colleges to find out how they use ICT classroom. Give a reason why simple random sampling may not give a representative sample of te feedback across different schools and levels. Explain why a stratified sample is more appropriate in this context. [Solution] Random sample refers to sample obtained from a sampling procedure whereby each m of the sample was selected from the population with an equal chance/probability. Simple random sampling does not guarantee representative sample of teachers' fee from across schools and levels because there is always the possibility that a chosen m sample may exclude a certain level such as all JC teachers. A stratified sample is preferred because the use of ICT varies with different school leve (primary, secondary, JC) and by considering mutually exclusive subgroups (strata), it he ensure that the different feedbacks can be collected from teachers of these school levels Furthermore, strata are selected based on their proportionality to the teacher population			

7	(a) (i)	6 men and 3 women signed up for a dance class. Find the number of ways of
		distributing them into 3 equally-sized groups labelled <i>A</i> , <i>B</i> and <i>C</i> . [2]
	(ii)	After the groups are finalised, the participants are asked to sit in a row of 11 chairs
		so that they can view a dance demonstration video. Find the number of possible
		arrangements so that members of each group are seated together. [3]
	(b)	Find the number of ways that 6 men and 3 women can sit in a circle of 9 chairs so
		that the women are seated together and two particular men are not seated next to
		each other. [3]
	[Solution	1]
	(a) (i)	Number of ways = $\binom{9}{3}\binom{6}{3}\binom{3}{3}=1680$
	(a) (ii) T	here will be $11 - 3 \ge 3 = 2$ empty seats.
	Т	herefore, the number of ways of rearranging the three groups where each family of

Therefore, the number of ways of rearranging the three groups where each family three sit together is $\frac{5!}{2!}3!3!3! = 12960$

Alternative Method 1:

[Take the 11 chairs to be 5 units. 5 units select 3 units to be the number of ways to seat the 3 groups of people. This is then followed by arranging the 3 groups as well as the 3 people in each group]


$$\binom{5}{3} \times (3!)^3 \times 3! = 12960$$

Alternative Method 2:

[Selecting the spaces between the 3 groups to put the empty chairs, can be 1 chair between the 2 groups or 2 chairs between 2 groups;]

$$\left[\binom{4}{2} + \binom{4}{1}\right] \times (3!)^3 \times 3! = 12960$$

13

8	Anand, Beng and Charlie patronised a restaurant that offered lucky draws to its c	ustomer
	depending on what they ordered.	
	Anand and Beng ordered set meals, and each got to participate in a lucky draw from t	he "Blue
	Box", which had a 25% chance of awarding a prize.	
	Charlie order a la carte, and got to participate in a lucky draw from the "Gold Box	", which
	had a 40% chance of awarding a prize.	
	Find the probability that	
	(i) Anand, Beng and Charlie all won prizes from their lucky draws.	[2]
	(ii) at least one of Anand, Beng and Charlie won a prize from their lucky draws.	[2]
	(iii) Charlie won a prize from his lucky draw, given that at least one of Anand, Beng	and
	Charlie won a prize from their lucky draws.	[4]
	[Solution]	
	(i) $P(all 3 \text{ won prizes}) = 0.25 \times 0.25 \times 0.4$	
	$= 0.025 = \frac{1}{40}$	
	(ii) P(at least 1 won a prize) = 1 – P(no one won a prize) = 1 – 0.75 × 0.75 × 0.6 = 0.6625 = $\frac{53}{80}$	
	(iii) P(Charlie won a prize at least 1 won a prize) = P(only C won)+P(only C and A won) +P(only C and B won) +P(all 3 won)	
	P(at least 1 won a prize)	
	$=\frac{(0.4\times0.75\times0.75)+2(0.4\times0.75\times0.25)+(0.4\times0.25\times0.25)}{0.6625}$	
	= 0.604 (3sf)	
	Alternative Solution 1:	
	P(Charlie won a prize at least 1 won a prize)	
	$=\frac{P(\text{Charlie won a prize and at least 1 won a prize})}{P(\text{at least 1 won a prize})} = \frac{0.4}{0.6625} = \frac{32}{53}$	
	P(at least 1 won a prize) $-0.6625 - 53$	
	Alternative Solution 2:	
	P(Charlie won a prize at least 1 won a prize) =	
	$=\frac{P(\text{Charlie won a prize and at least 1 won a prize})}{P(\text{at least 1 won a prize})} = \frac{\frac{53}{80} - P(ABC', A'BC', ABC')}{0.6625}$	$\frac{(2')}{(2')} = \frac{32}{53}$
	P(at least 1 won a prize) = 0.6625	$==\frac{1}{53}$

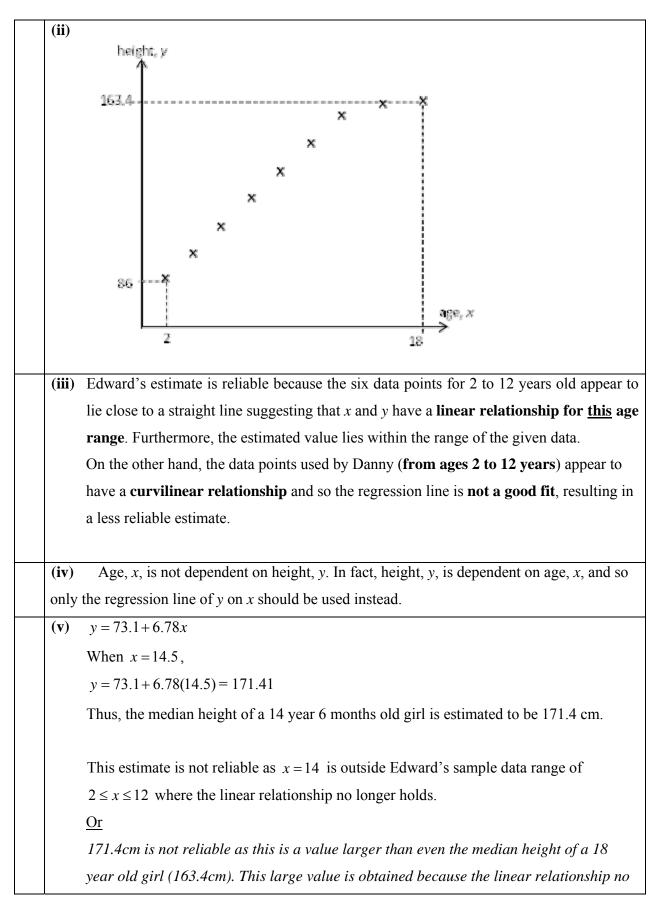
9	Amo	ngst various exhibits at an art gallery, only paintings and sculptures are placed for sale.
9		
	The 1	number of paintings sold from the art gallery in a week follows a Poisson distribution
	with	mean 1. The number of sculptures sold from the same art gallery in a week follows a
	Poiss	on distribution with mean 0.25. You can assume that the sale of the sculptures and
	paint	ings are independent. Taking a month to be 4 weeks,
	(i)	find the probability that one painting is sold in a month. [1]
	(ii)	find the probability that over a period of 4 weeks, the first sculpture is sold in the
		fourth week. [2]
	(iii)	If the total sales exceed 4 pieces in a month, the gallery owner will consider that month
		a "Good" month. Taking a year to be 12 months, use a suitable approximation to find
		the probability that there are no more than 30 "Good" months in 5 years. [6]
	[Solu	tion]
	(i)	Let A be the number of paintings sold in 1 month. $A \sim P_o(4)$
		Req prob = $P(A=1) = 0.0733$
	(ii)	Let <i>B</i> be the number of sculptures sold in 1 week. $B \sim P_0(0.25)$
		Req prob = $\left[P(B=0) \right]^3 P(B \ge 1)$
		= 0.104
	(iii)	Let <i>C</i> be the number of art pieces sold in 1 month. $C \sim P_0(5)$ Probability of a "Good" month = $P(C > 4)$
		$=1 - P(C \le 4)$
		= 0.5595067149
		Let X be the number of "Good" months in 5 years.
		$X \sim B(60, 0.5595067149)$
		Since $n = 60$ is large, $np = 33.57040289 > 5$ &
		n(1-p) = 26.42959711 > 5
		$X \square N(33.57040289, 14.78753706)$ approx.
		Req prob = $P(X \le 30) \stackrel{c.c}{=} P(X < 30.5)$ = 0.21230

received complaints from some customers who claimed that the flour they bought weighed less. To test the claim, the manufacturer takes a random sample of 60 bags and records down the weight, t kg, of the flour in each bag. The results are summarised by

$$\sum t = 291.6$$
 and $\sum (t - 4.86)^2 = 18.344$

[5]

Test, at 5% significance level, if the complaints are justified.


The manufacturer decides to re-label the weight of flour in each bag as μ_0 kg. Find the range of values of μ_0 so that the data previously collected provides insufficient evidence at the 10% level of significance to conclude that the mean weight of flour in a bag is not μ_0 kg. Leave your answers correct to 2 decimal places. [4]

[Solution] $\overline{t} = \frac{291.6}{60} = 4.86$, (i) $s^2 = \frac{1}{59} \sum (t - 4.86)^2 = \frac{18.344}{59},$ $H_0: \mu = 5$ $H_1: \mu < 5$ Level of significance = 5%Under H_0 , $Z = \frac{\overline{T} - \mu}{s / \sqrt{n}} \sim N(0, 1)$ by the Central Limit Theorem p - value = 0.0259Conclusion: Since *p*-value = 0.0259 < 0.05, we reject H_0 . There is sufficient evidence, at 5% level of significance, to say that the manufacturer has overstated the mean weight. Alternatively, a t-test can be used [ie p-value = 0.0283, reject H_0] and the assumption that T is normally distributed must be mentioned. $H_0: \mu = \mu_0$ (ii) H_1 : $\mu \neq \mu_0$ Level of significance = 5%Test statistic: $Z = \frac{\overline{T} - \mu}{s / \sqrt{n}} \sim N(0, 1)$ by the Central Limit Theorem

Under H₀,
$$z_{cal} = \frac{4.86 - \mu_0}{\sqrt{\frac{18.344}{59}}/60}}$$

So in order for H₀ not to be rejected at 5% level of significance, $|z_{cal}| < 1.64485$
 $\Rightarrow \left| \frac{4.86 - \mu_0}{\sqrt{\frac{18.344}{59}}/60} \right| < 1.64485$
 $\Rightarrow -1.64485 < \frac{4.86 - \mu_0}{\sqrt{\frac{18.344}{59}}/60} < -1.64485$
 $\Rightarrow 4.74128 < \mu_0 < 4.9787$
So the range of values of μ_0 is $4.75 \le \mu_0 \le 4.97$ (2 d.p.)
Alternatively, students can perform a t-test, ie
 $\Rightarrow \left| \frac{4.86 - \mu_0}{\sqrt{\frac{18.344}{59}}/60} \right| < 1.67109$
 $\Rightarrow 4.7397 < \mu_0 < 4.9803$
So the range of values of μ_0 is $4.74 \le \mu_0 \le 4.98$ (2 d.p.)

11	The follow	ving data	shows	the medi	an height	ts of girls	(in cm)	for ages :	from eac	h year 2	to 18.
	Age, <i>x</i>	2	4	6	8	10	12	14	16	18	

ye	ars										
	ight, cm	86	99.8	115	128	140.4	153.9	161.4	162.5	163.4	
	Danny computed the linear product moment correlation coefficient to be 0.970, and conclude that a linear model should be used to represent the relationship between <i>x</i> and <i>y</i> .									cludes	
(i)					1	nd <i>b</i> for t	-	-		•	[1]
(ii)	Draw	a scatte	er diagra	um for th	e data.			•			[2]
			U								
Dann	ny used	the eq	uation ir	n (i) to es	stimate th	ne mediar	n height c	of an 11 y	/ear-old §	girl.	
						above dat	e				ate the
medi	an heig	ght of t	he 11 ye	ar old g	irl. He ca	alculated	the least	squares	regressio	n line of	y on x
and f	ound it	to be	y = 73.1	+6.78x				-	-		
(iii)	Expla	in why	Danny'	s estima	te is not 1	eliable a	s compar	ed to Ed	ward's.		[2]
(iv)	Expla	in why	Edward	l should	not use t	he regres	sion line	of x on	y to estin	nate the 1	nedian
	height	t of a g	irl.								[1]
(v)	Using	Edwar	d's regr	ession li	ne of y o	n <i>x</i> , estir	nate the 1	nedian h	eight of	a girl wh	o is 14
	years	and 6 r	nonths c	old.							[1]
	Expla	in why	this es	stimate i	s not re	liable, ai	nd sugge	st a mo	del to ol	otain a r	eliable
	estima	ate.									[2]
(vi)	Interp	ret the	regress	ion coef	ficient o	f Edwar	d's regre	ssion lin	e in the	context	of the
	questi	on.									[1]
[Solu	ution]										
(i)	From	GC, the	e least so	quares re	gression	line of y	on x is	y = 83.12	22+5.13	67 <i>x</i>	
		\Rightarrow	v =	83 1+5	14 <i>x</i> (to	3 sig fig	c)				

longer holds beyond age 12 years.A reliable estimate can be observed by modelling the given data (for ages 2 to 12 years)using a curve that is increasing and concave downwards.(vi) The regression coefficient of 6.78 means that a girl aged between 2 and 12 years is
predicted to grow by 6.78cm each year.

12 The height of a three-year old boy from Sunshine Childcare Centre is a random variable with

mea	n 105 cm and standard deviation 9 cm.
(i)	Find the mean and variance of the total height of a random sample of 72 three-year old
	boys. [2]
	Hence, find the probability that their total height is greater than 76 m. [2]
The	heights of three-year old girls from Sunshine Childcare Centre are modelled as having
norr	nal distribution with mean μ cm and standard deviation σ cm.
(ii)	If the probability that a randomly chosen three-year old girl has a height of 95 cm or les
	is $\frac{1}{6}$, find an equation satisfied by μ and σ . [2]
For	the rest of the question, take $\mu = 100$ and $\sigma = 5.17$.
(iii)	10 three-year-old girls are randomly chosen from the centre. Find the probability that th
	height of the shortest girl in the group is more than 95 cm. [2]
(iv)	Determine if $\overline{G} = \frac{G_1 + G_2 + G_3}{3}$ and G_1 are independent random variables, where
	G_1, G_2, G_3 denote the heights of 3 randomly chosen three-year-old girls from the centre
	[1]
(v)	Find $P(\overline{G} \ge G_1 + 2)$. [3]
	ution]
-	<i>B</i> denote the height of a randomly chosen three-year old boy from Sunshine Childcare
	tre. $E(B) = 105$, $Var(B) = 9^2$
(i)	Let $S = B_1 + B_1 + \dots + B_{72}$. Then
	$E(S) = 72 \times 105 = 7560, Var(S) = 72 \times 9^2 = 5832$
	Since <i>n</i> is large, by Central Limit Theorem,
	$S \square N(7560, 5832)$ approximately
	P(S > 7600) = 0.300
(ii)	Let G denote the height of a randomly chosen three-year old boy from Sunshine

Childcare Centre. $G \sim N(\mu, \sigma^2)$ Given $P(G \le 95) = \frac{1}{6}$ $P\left(Z \leq \frac{95-\mu}{\sigma}\right) = \frac{1}{6}$ Using GC, $\frac{95-\mu}{\sigma} = -0.967421568$ $\mu - 0.967\sigma = 95$ (Shown) Required Probability = $\left[P(R > 95) \right]^{10} = (0.833333341)^{10} = 0.161$ (iii) \overline{G} and G_1 are not independent of one another as G_1 is a component of (**iv**) $\overline{G} = \frac{G_1 + G_2 + G_3}{3}$. [Note that you are not required to prove that \overline{G} and G_1 are not independent mathematically as it's beyond your scope of A-level syllabus] (v) Now $P(\overline{G} \ge G_1 + 2) = P\left(\frac{G_1 + G_2 + G_3}{3} \ge G_1 + 2\right)$ $= P(G_1 + G_2 + G_3 \ge 3G_1 + 6)$ $= P(G_2 + G_3 - 2G_1 \ge 6)$ $E(G_2 + G_3 - 2G_1) = 0$ and $\operatorname{Var}(G_2 + G_3 - 2G_1) = 2(5.17^2) + 4(5.17^2) = 6(5.17^2)$ So $G_2 + G_3 - 2G \Box N(0, 6(5.17^2))$ So $P(\overline{G} \ge G_1 + 2) = P(G_2 + G_3 - 2G_1 \ge 6) = 0.318$