2023 Term 4 Timed Practice (Structured Remedial Session 2)

Question 1 (N16/I/9)

A stone is held on the surface of a pond and released. The stone falls vertically through the water and the distance, x metres, that the stone has fallen in time t seconds is measured. It is given that x = 0 and $\frac{dx}{dt} = 0$ when t = 0.

(i) The motion of the stone is modelled by the differential equation

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} = 10 \; .$$

(a) By substituting $y = \frac{dx}{dt}$, show that the differential equation can be written as

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 2y \,. \tag{1}$$

Solution	Learning Points and self mark
$y = \frac{dx}{dt}$ Differentiate with respect to t, (Use the substitution given and diff wrt t) $\frac{dy}{dt} = \frac{d^2x}{dt^2} .$ Sub $\frac{dy}{dt} = \frac{d^2x}{dt^2}$ and $y = \frac{dx}{dt}$, (use above 2 results to now substitute into the original equation, with objective that your new equation is one that involves only y and t , free of x) $\frac{d^2x}{dt^2} + 2\frac{dx}{dt} = 10$ $\frac{dy}{dt} + 2y = 10$ $\frac{dy}{dt} = 10 - 2y$ (Shown)	(Need know this substitution is not the typical one, but one that helps you step down from 2 nd derivative equation to a 1 st derivative equation. The concept and process is similar to the typical substitution. In a nutshell, you must follow the prompt "By substituting, show that", otherwise its impossible to solve! 1 mark to show you have the steps leading to the shown result

Solution	
$\frac{\mathrm{d}y}{\mathrm{d}t} = 10 - 2y$	1 mark- do separable variables.
$\frac{1}{10-2y} \frac{dy}{dt} = 1$	
$\int \frac{1}{10 - 2y} \mathrm{d}y = \int 1 \mathrm{d}t$	(these 7 steps on left are standard
$\frac{1}{1}$ $\frac{1}{10}$ $\frac{1}{2}$ $\frac{1}{10}$ $\frac{1}{10}$	process - pls
$-\frac{1}{2}$ Im $ 10-2y = t+c$	learn)
$\ln 10 - 2y = -2t + C, C = -2c$	
$10-2y = \pm e^{-2t+C} = Ae^{-2t}, \qquad A = \pm e^{C}$	1 mark for ln
$y = 5 - \frac{A}{2} e^{-2t}$	1 mark – arrive at
When $t = 0$, we have $x = 0$ and $y = \frac{dx}{dt} = 0$,	1 mark substitute
$0=5-\frac{A}{2}e^{0}$	initial conditions and attempt find the constant
<i>A</i> = 10	A.
Therefore, $y = 5 - 5e^{-2t}$	
$\frac{\mathrm{d}x}{\mathrm{d}t} = 5 - 5\mathrm{e}^{-2t}$	1 mark- method for
$x = \int 5 - 5e^{-2t} dt$	time wrt <i>t</i> after rewriting
$x = 5t + \frac{5}{2}e^{-2t} + D$	y as $\frac{dx}{dt}$.
When $t = 0$, we have $x = 0$,	negative signs!
$0 = 5(0) + \frac{5}{2}e^{0} + D$	
$D = -\frac{5}{2}$	
Therefore,	
$x = 5t + \frac{5}{2}e^{-2t} - \frac{5}{2}$	1 mark- final answer (all terms correct)
	1

(ii) A second model for the motion of the stone is suggested, given by the differential equation

$$\frac{d^2 x}{dt^2} = 10 - 5\sin\frac{1}{2}t$$

Find *x* in terms of *t* for this model.

Solution	
$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = 10 - 5\sin\frac{1}{2}t$	(note this is a second order DE, need do twice
$\frac{\mathrm{d}x}{\mathrm{d}t} = \int 10 - 5\sin\frac{1}{2}t \mathrm{d}t$	1 mark – integrating sine function correctly
$\frac{\mathrm{d}x}{\mathrm{d}t} = 10t + 10\cos\frac{1}{2}t + E$	Need arbitrary constant E here.
When $t = 0$, we have $\frac{dx}{dt} = 0$,	Note the negative sign.
$0 = 10(0) + 10\cos 0 + E$	
E = -10	
$x = \int 10t + 10\cos\frac{1}{2}t - 10 \mathrm{d}t$	
$x = 5t^2 + 20\sin\frac{1}{2}t - 10t + F$	
When $t = 0$, we have $x = 0$,	1 mark – integrate one
$0 = 5(0^{2}) + 20\sin 0 - 10(0) + F$	attempt to find the 2
F = 0	arbitrary constants
Therefore,	
$x = 5t^2 + 20\sin\frac{1}{2}t - 10t.$	1 mark – accurate answer

Question 2

- (i) Given that $y = \sqrt{1 + \sin x}$, prove that $2y \frac{dy}{dx} = \cos x$. By repeated differentiation of this result expand y as a series of ascending powers of x up to and including the x^3 term.
- (ii) Using the standard series from the List of Formulae (MF26), verify that the same result can be obtained for y, up to the x^2 term, for small x. [3]

[5]

(*)		
(1)	Method 1	
	$y = \sqrt{1 + \sin x}$	This math ad
	Differentiate with respect to <i>x</i> ,	requires you to
	$\frac{dy}{dt} = \frac{\cos x}{\cos x}$	
	$dx = 2\sqrt{1+\sin x}$	rewrite $\sqrt{1} + \sin x$
	dy	back as y.
	$2\sqrt{1} + \sin x \frac{dx}{dx} = \cos x$	1 marts
	dy	
	$2y\frac{dy}{dx} = \cos x$ (Shown)	
	άλ	
	Method 2 (preferred)	
	$y = \sqrt{1 + \sin x}$	
	$v^2 - 1 + \sin r$	
	$y = 1 + \sin x$ Differentiate with respect to x (must use implicit diffu)	
	dy	
	$2y \frac{dy}{dx} = \cos x$ (Shown)	
	ax a	
	Diff implicitly wrt x,	
	$2\left(\frac{dy}{dy}\right)^2 + 2y \frac{d^2y}{d^2y}$ sin y	1 mark- get this 2 nd
	$2\left(\frac{1}{dx}\right) + 2y\frac{1}{dx^2} = -\sin x$	derivative
	(1)(12)(1)(1)(1)(1)	expression correct.
	$4\left(\frac{dy}{dx}\right)\left(\frac{dy}{dx^2}\right) + 2\left(\frac{dy}{dx}\right)\left(\frac{dy}{dx^2}\right) + 2y\frac{dy}{dx^3} = -\cos x$	(implicit diffn must
	$\left(\frac{dx}{dx^2} \right) \left(\frac{dx}{dx^2} \right) \frac{dx^2}{dx^3} dx^3$	be fluent. Note that
	$(dy)(d^2y)$ d^3y	Product rule
	$6\left(\frac{3}{dx}\right)\left(\frac{3}{dx^2}\right) + 2y\frac{3}{dx^3} = -\cos x$	two terms as
	$\frac{dx}{dx} = 0$	dy
	when $x = 0$,	$2y$ and $\frac{dy}{dr}$)
		$1 \text{ mark} - \text{get } 3^{\text{rd}}$
		derivative
		expression correct.
		Ĩ

	$y = \sqrt{1+0} = 1,$	
	$2(1)\frac{dy}{dx} = \cos 0 \Rightarrow \frac{dy}{dx} = \frac{1}{2},$ $2\left(\frac{1}{2}\right)^{2} + 2\frac{d^{2}y}{dx^{2}} = 0 \Rightarrow \frac{d^{2}y}{dx^{2}} = -\frac{1}{4},$ $6\left(\frac{1}{2}\right)\left(-\frac{1}{4}\right) + 2\frac{d^{3}y}{dx^{3}} = -1 \Rightarrow \frac{d^{3}y}{dx^{3}} = -\frac{1}{8}$ $\sqrt{1 + \sin x} = 1 + \left(\frac{1}{2}\right)x + \frac{\left(-\frac{1}{4}\right)}{2!}x^{2} + \frac{\left(-\frac{1}{8}\right)}{3!}x^{3} + \dots$ $\approx 1 + \frac{x}{2} - \frac{x^{2}}{8} - \frac{x^{3}}{48}$	 1 mark (for all values of derivatives evaluated at x=0) <i>Refer/consult MF26</i> to quote Maclaurin formula. 1 (final answer) (do the above steps systematically to find the derivatives when x=0, don't skip essential working steps
		mark only)
(ii)	Using the MF26 sin x series, observe that sin $x \approx x$.	
	(Alternate, By small angle approximation, since $\sin x \approx x$)	1 mark apply approx
	$\sqrt{1+\sin x} \approx \sqrt{1+x}$	
	$= (1+x)^{\frac{1}{2}}$	
	$=1 + \left(\frac{1}{2}\right)x + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}x^{2} + \dots$	1 mark apply binomial
	$\approx 1 + \frac{x}{2} - \frac{x^2}{8}$	1 final expression and statement to
	Comparing with (i), the terms agree up to the square term for small x .	conclude that its
	(verified)	verified.