Additional Mathematics Sec 4 Express MYE Examination 2021 (Paper 2) Marking Scheme (Setter: Teo Hock Siong)

Question	Solution	Marks	
			Total
1	By long division,		
	$\frac{3}{x^3+2x)3x^3+6x-8}$		
	-8	M1	
	$\frac{3x^3 + 6x - 8}{x(x^2 + 2)} = 3 - \frac{8}{x(x^2 + 2)}$	M1	
	$\frac{-8}{x(x^2+2)} = \frac{A}{x} + \frac{Bx+C}{x^2+2}$	M1	
	$8 = A(x^{2} + 2) + (Bx + C)(x)$ Using substitution, $x = 0$,		
	-8 = 2A $A = -4$	M1	
	Comparing <i>x</i> -coefficient, C = 0	M1	
	Comparing x^2 -coefficient 0 = A + B B = 4	M1	
	Therefore,	A1	7m

	$\frac{3x^3 + 6x - 8}{x(x^2 + 2)}$	⁸ − = 3 −	$\frac{4}{x} + \frac{4x}{(x^2 + x)^2}$	2)				
2a	1 0	0.83	0.42	0.28	0.21	0.17		
	x							
	$\frac{1}{y^{i}}$ 0	0.62	0.50	0.41	0.38	0.36	B1	
	Correct axe	s and p	plotted poi	ints.			B1	
	Appropriate	e straig	sht line dra	awn.			B1	3m
							l	

2bi	$\frac{1}{y} = 0.46$ $\therefore y \approx 2.17 \ (\pm 0.1)$ (3s.f.)	B1	1m
01			
2611	$\frac{a}{x} - \frac{b}{y} = 1$ $\frac{b}{y} = \frac{a}{x} - 1$ $\frac{1}{y} = \frac{a}{b} \left(\frac{1}{x}\right) - \frac{1}{b}$	M1	
	From the graph,		
	$-\frac{1}{b} = 0.29$ $b \approx -3.45(\pm 0.1)$ (3 s.f.)	A1	
	Using 2 points on the graph, (0.83, 0.62) & (0, 0.29) $\frac{a}{b} = \frac{0.62 - 0.29}{0.83 - 0}$	M1	
	$a = \frac{0.62 - 0.29}{0.83} \times (-3.45)$ $a \approx -1.37(\pm 0.1)$ (3s.f.)	A1	4m
2c	$\frac{a}{x} - \frac{b}{y} = 1$ $b\left(\frac{x}{y}\right) = a - x$ $\frac{x}{y} = \left(\frac{-1}{b}\right)x + \frac{a}{b}$ $\frac{x}{y} = \frac{x}{b}$	M1	
	By plotting \mathcal{Y} against x , a and b can be found using		

	gradient = $\frac{-1}{b}$ and	A1	
	$\frac{x}{y}$ - intercept = $\frac{a}{b}$	A1	3m
3	y y x $y = 1$		
ai	<i>x</i> -intercept of curve		
		Δ1	1m

	$\cos\frac{1}{3}x = 0$ 3π		
	$x = \frac{1}{2}$		
aii	$2\cos\frac{1}{3}x = -1$		
	$\cos\frac{1}{3}x = -\frac{1}{2}$		
	$Basic \angle = \cos^{-1} \frac{1}{2}$		
	$=\frac{\pi}{3}$ 1 π π	M1	
	$\frac{-3}{3}x = \pi - \frac{-3}{3}$ $\frac{1}{2}x = \frac{2\pi}{3}$		
	$3^{x} = 3$ $x = 2\pi$	A1	2m

$\int \frac{3\pi}{2} 2 = 1$		
Area of region $A = \int_0^{\infty} 2\cos(-x) dx$		
$= \left[\frac{2\sin\frac{1}{3}x}{\frac{1}{3}}\right]_{0}^{\frac{3\pi}{2}}$		
$= \left(6\sin\frac{1}{3}x\right)_0^{\frac{3\pi}{2}}$		
= 6		
	M1	
Area of rectangle		
$= (1)(2\pi)$		
= 6.28319	M1	
Area of region B		
$= -\int_{1.5\pi}^{2\pi} 2\cos\frac{1}{3}x$		
$= -\left[\frac{2\sin\frac{1}{3}x}{\frac{1}{3}}\right]_{\frac{3\pi}{2}}^{2\pi}$		
$= -\left[6\sin\frac{1}{3}x\right]_{\frac{3\pi}{2}}^{2\pi}$		
$= -\left[\left(6\sin\frac{1}{3}(2\pi)\right) - \left(6\sin\frac{1}{3}(\frac{3\pi}{2})\right)\right]$		
≈ 0.8038		
Area of region C	M1	
= 6.28319 - 0.8038		
= 5.480		
	M1	
	$\begin{aligned} &= \left[\frac{2\sin\frac{1}{3}x}{\frac{1}{3}}\right]_{0}^{3\frac{\pi}{2}} \\ &= \left(6\sin\frac{1}{3}x\right)_{0}^{3\frac{\pi}{2}} \\ &= 6 \end{aligned}$ $\begin{aligned} &Area \text{ of rectangle} \\ &= (1)(2\pi) \\ &= 6.28319 \end{aligned}$ $\begin{aligned} &Area \text{ of region B} \\ &= -\int_{1.5\pi}^{2\pi} 2\cos\frac{1}{3}x \\ &= -\left[\frac{2\sin\frac{1}{3}x}{\frac{1}{3}}\right]_{\frac{3\pi}{2}}^{2\pi} \\ &= -\left[6\sin\frac{1}{3}x\right]_{\frac{3\pi}{2}}^{2\pi} \\ &= -\left[\left(6\sin\frac{1}{3}(2\pi)\right) - \left(6\sin\frac{1}{3}(\frac{3\pi}{2})\right)\right] \\ &\approx 0.8038 \end{aligned}$ $\begin{aligned} &Area \text{ of region C} \\ &= 6.28319 - 0.8038 \\ &= 5.480 \end{aligned}$	$\begin{aligned} &= \left[\frac{2\sin\frac{1}{3}x}{\frac{1}{3}}\right]_{0}^{\frac{3\pi}{2}} \\ &= \left(6\sin\frac{1}{3}x\right)_{0}^{\frac{3\pi}{2}} \\ &= 6 \end{aligned} \qquad \qquad$

	Required shaded area = $6 + 5.480$ = 11.5 units^2 (3 s.f.)	A1	5m
4a	$x^{2} + 2(2x + k)^{2} = 8$ 9x ² + 8kx + 2k ² - 8 = 0	M1	
	Line and Curve intersect at 2 distinct points, $(8k)^2 - 4(9)(2k^2 - 8) > 0$ $64k^2 - 72k^2 + 288 > 0$ $8k^2 - 288 < 0$	M1	
	$k^2 - 36 < 0$ (k-6)(k+6) < 0	M1	
	-6 < k < 6	M1	
	Largest integer k is 5.	A1	5m
4b	Since $y > 0$,	M1	

	$(2m)^{2} - 4(m-5)(m+3) < 0$ $4m^{2} - 4m^{2} + 8m + 60 < 0$ 8m + 60 < 0 15	M1	
	$m < -\frac{15}{2}$	M1	
	But $y > 0$ means the x^2 coefficient must be positive, that is $m-5 > 0 \implies m > 5$		
	Since <i>m</i> must be $m < -\frac{15}{2}$ and $m > 5$ for $y > 0$, \therefore there are no values of <i>m</i> for which $y > 0$ (is always positive).	A1	4m
5a	$\int_{3}^{0} f(x)dx + \int_{0}^{3} g(x)dx = \int_{0}^{3} e^{-3x}dx$ $- \int_{0}^{3} f(x)dx + \int_{0}^{3} g(x)dx = \int_{0}^{3} e^{-3x}dx$ $- a + (-2a) = \int_{0}^{3} e^{-3x}dx$ $- 3a = \left[\frac{e^{-3x}}{a}\right]^{3}$	M1 M1	
	$-3a = \left[\frac{-3}{-3}\right]_{0}$ $-3a = \left[\frac{e^{-3(3)}}{-3}\right] - \left[\frac{e^{3(0)}}{-3}\right]$ $-3a = 0.33329$	M1	
			I

	a = -0.111 (3 s.f.)	A1	4m
El.:		M1	
301	$y = \ln\left(\frac{x-3}{x+3}\right) = \ln(x-3) - \ln(x+3)$	1 VI 1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x-3} - \frac{1}{x+3}$	M1	
	$=\frac{(x+3)-(x-3)}{(x-3(x+3))}$		
	$= \frac{6}{x^2 - 9}$ (shown)	A1	3m
5bii	$\int_{4}^{6} \left(\frac{2x+3}{x^2-9}\right) dx = \int_{4}^{6} \left(\frac{2x}{x^2-9}\right) dx + \int_{4}^{6} \left(\frac{3}{x^2-9}\right) dx$	M1	
	$= \left[\ln(x^2 - 9) \right]_4^6 + \frac{1}{2} \int_4^6 \left(\frac{6}{x^2 - 9} \right) dx$	M1	
	$= \left[\ln(x^2 - 9) + \frac{1}{2} \ln\left(\frac{x - 3}{x + 3}\right) \right]_4^6$	M1	
	$= \left(\ln 27 + \frac{1}{2} \ln \frac{3}{9} \right) - \left(\ln 7 + \frac{1}{2} \ln \frac{1}{7} \right)$	M1	
	= 1.77 (3 s.f.)	A1	5m

6	$\frac{1}{2} \frac{m}{m} \frac{1}{1} \frac{m}{F} \frac{1}{D}$		
ба	AD = AE + ED		
	= AE + BF	M1	
	$=\cos\theta + 2\sin\theta$	A1	2m
	(shown)		2111
b	$\cos\theta + 2\sin\theta = R\cos(\theta - \alpha)$	M1	
	$= R\cos\theta\cos\alpha + R\sin\theta\sin\alpha$	111	
	Thousform		
	$R\cos\alpha = 1$ (1)		
	$R\sin\alpha = 2$ (2)		
	(2)		
		M 1	
		111	

	$(1)^2 + (2)^2$		
	$R^2\cos^2\alpha + R^2\sin^2\alpha = l^2 + 2^2$		
	$R^2(\cos^2\alpha + \sin^2\alpha) = 5$		
	$R^2 = 5$		
	$R = \sqrt{5}$		
		M1	
	$(2) \div (1)$		
	$\frac{R\sin\alpha}{R\cos\alpha} = \frac{2}{1}$	A1	4m
	$\tan \alpha = 2$		
	$\alpha = \tan^{-1} 2$		
	$= 63.4^{\circ}$		
	0211		
	$AD = \sqrt{5}\cos(\theta - 63.4^{\circ})$		
С	Maximum value of AD is $\sqrt{5}$.	B1	
	$\cos(\theta - 63.4^{\circ}) = 1$	241	
	$\theta - 63.4^\circ = \cos^{-1} 1$	MI	
	$\theta = 63.4^{\circ}$	A1	3m
d	$AD = \sqrt{5}\cos(\theta - 63.4^{\circ})$		
	$\sqrt{5}\cos(\theta - 63.4^{\circ}) = 2.15$		
	$\cos(\theta - 63.4^{\circ}) = 0.9615$	M1	
	$\theta - 63.4^{\circ} = 15.95^{\circ}$	M1	
	$\theta = 79.4^{\circ}$	A1	3m
	(1 dec pl)		
7a	$dy = 2x(x-3) - (x-3)^2$		
	$\frac{dx}{dx} = \frac{1}{x^2}$		

	$=\frac{x^2-9}{x^2}$	A1	
	To find stationary point, set		
	$\frac{x^2-9}{x^2}=0$		
	$x^2 - 9 = 0$		
	(x+3)(x-3) = 0		
	x = -3 , 3	M1	
	When $x = -3$		
	$y = \frac{(-3-3)^2}{-3}$		
	= -12		
	When $x = 3$		
	$y = \frac{(3-3)^2}{3}$		
	= 0		
	The stationary points are $(3, 0)$ and $(-3, -12)$	AI, Al	4m
b	$\frac{d^2 y}{dx^2} = \frac{x^2 (2x) - (x^2 - 9)(2x)}{x^4}$		
	$=\frac{18}{x^3}$	M1	

	When $x = -3$		
	$\frac{d^2 y}{dx^2} = \frac{18}{(-3)^3}$		
	$=-\frac{2}{3}<0$	M1	
	Therefore, (-3, -12) is a maximum point.	A1	
	When $x = 3$		
	$\frac{d^2 y}{dx^2} = \frac{18}{(3)^3} = \frac{2}{3} > 0$	M1	
	Therefore, (3, 0) is a minimum point.	A1	5m
8ai	Since the centre lies on the line $y = x + 8$, let the centre, <i>C</i> , be $(a, a + 8)$.	M1	
	Using the concept of radius, AC = BC $\sqrt{(a-0)^2 + (a+8-9)^2} = \sqrt{(a-(-3))^2 + (a+8-0)^2}$	M1	
	$a^{2} + (a-1)^{2} = (a+3)^{2} + (a+8)^{2}$ $a^{2} + a^{2} - 2a + 1 = a^{2} + 6a + 9 + a^{2} + 16a + 64$ $24a = -72$	M1	
	210 - 72		
	a = -3 $a + 8 = 5$	A1	
	Therefore, centre of the line <i>C</i> is $(-3,5)$. (Shown)		4m

	Or Alternative Method		
8ai	Mid-point of AB $= \left(\frac{0 + (-3)}{2}, \frac{9 + 0}{2}\right)$ $= \left(-\frac{3}{2}, \frac{9}{2}\right)$ Gradient of AB $= \frac{9 - 0}{0 - (-3)}$ $= 3$	M1	
	Let equation of perpendicular bisector of AB $y = -\frac{1}{3}x + c$ Put $\left(-\frac{3}{2}, \frac{9}{2}\right)$, $\frac{9}{2} = -\frac{1}{2}\left(-\frac{3}{2}\right) + c$	M1	
	z = 3(-2) c = 4 $y = -\frac{1}{3}x + 4$ Solving $y = -\frac{1}{3}x + 4$ and $y = x + 8$	M1	

	$-\frac{1}{3}x + 4 = x + 8$	A1	
	x = -3		
	y = -3 + 8		
	= 5		
	Hence the require centre C is (-3, 5). (shown)		
aii	Since $B(-3,0)$ and $C(-3,5)$		
	Radius of circle C_1 is		
	$\sqrt{(-3-(-3))^2+(0-5)^2}$		
	= = 5	M1	
	Therefore, equation of circle C_1 is $(x+3)^2 + (x-5)^2 = 5^2$		
	$(x+3)^{2} + (y-5)^{2} = 25$ $(x+3)^{2} + (y-5)^{2} = 25$	A1	2m
bi	Using the equation of circle		
	$x^{2} + y^{2} + 2gx + 2fy + c = 0$, where centre C = (-g, -f),		
	Hence for C(-3, 5), $g = 3$ and $f = -5$		
	Then for equation $x^2 + y^2 + ax + by - 2 = 0$,		
	a = 2g		
	= 2(3)		
	= 6	Al	

	b = 2f = 2(-5) = -10	A1	2m
bii	Radius of equation of circle C_2		
	$=\sqrt{f^2+g^2-c}$		
	$= \sqrt{(-5)^2 + (3)^2 - (-2)}$ = 6	A1	
	Radius of C_2 is 6 units and they have the same centre.		
	Since the radius of C_2 is longer than that of C_1 , circle C_2 lies outside the circle C_1 .	B2	3m
9a	$2^{x+1} + 3\left(\frac{1}{2^x}\right) = 7$		
	When $u = 2^x$,		
	$2(2^x) + 3\left(\frac{1}{2^x}\right) = 7$		
	$2u + \frac{3}{u} = 7$	M1	
	$2u^2 - 7u + 3 = 0$		
	(2u-1)(u-3) = 0		
	$u = \frac{1}{2}$		
	$2^{x} = 2^{-1}$		
	x = -1	A1	
1		1	

	<i>u</i> = 3		
	$2^{x} = 3$		
	$\lg 2^x = \lg 3$		
	$r = \frac{\lg 3}{1}$		
	$x = \frac{1}{\lg 2}$		
	≈1.584		
	≈1.58		
	(3 <i>s</i> . <i>f</i> .)	M1	
		A1	4m
			1111
9b	$9 \log_x 3 = 6 - \log_3 x$		
	$9\frac{\log_3 3}{\log_3 x} = 6 - \log_3 x$	M1	
	$(\log_3 x)$		
	$9 = 6 \log_3 x - (\log_3 x)$		
	let $u = \log_3 x$		
	$9 = 6u - u^2$	M1	
	$u^2 - 6u + 9 = 0$		
	$(u-3)^2 = 0$		
	<i>u</i> = 3	141	
	$\log_3 x = 3$	MI	
	<i>x</i> = 27	A1	4m

9c	$7^{n+1} - 4(7^n) - \frac{1}{7}(7^n)$		
	$= 7(7^{n}) - 4(7^{n}) - \frac{1}{7}(7^{n})$		
	$=7^{n}(7-4-\frac{1}{7})$	M1	
	$=\frac{20}{7}(7^n)$		
	$=20(7^{n-1})$	M1	
	Since 20 is divisible by 2, $7^{n+1} - 4(7^n) - 7^{n-1}$ is an even number for all positive values of <i>n</i> .	B1	3m