Electric Fields

Coulomb's law of Electrostatic Force – The magnitude of the electrostatic force between two <u>point charges</u> is directly proportional to the product of the charges and inversely proportional to the square of their separation.

Electric Potential Energy – <u>work done by an external agent on the charge</u> in moving the charge <u>from infinity to that point</u>.

Electric Field Strength, *E* – <u>at a point</u> in an electric field is the <u>electric force per unit positive</u> <u>charge</u> acting on a <u>stationary test charge</u> placed <u>at that point</u>.

Electric Potential, V – work done **per unit** positive charge by an external agent in moving a <u>point</u> charge from infinity to that point.

Electric Field Strength and Potential in Conductors:

- *E* is zero but *V* maybe non-zero within a conductor.
 - Because net charges will distribute over the surface of (but not within) the conductor.
 - Charge density is larger at region of smaller radius of curvature
- Since E = 0, and E = -dV/dr, there is no change in potential \rightarrow equipotential throughout the conductor. (Note: same potential does not mean zero potential)

d d d d d d d d d d		
Force on charge -q	${\cal F}=qrac{{\it \Delta}V}{d}$, upward	
Acceleration on charge -q	$a_{y} = \frac{F}{m} = \frac{q \Delta V}{m d}$	
Equations of Motion	y-directions	x-direction
 <i>u_x</i> remains constant Applicable only within plates, in the uniform field 	$s_y = u_y t + \frac{1}{2} a_y t^2$	$s_x = u_x t$
uniform field	$v_{y}^{2} = u_{y}^{2} + 2a_{y}s_{y}$	$V_x^2 = U_x^2$ $V_x = U_x$
	$V_{\gamma} = U_{\gamma} + a_{\gamma}t$	
Final Velocity	$\vec{V} = \vec{U}_x + \vec{V}_y$ $V = \sqrt{{U_x}^2 + {V_y}^2}$	
Time of Flight (Time within Plates)	$t_f = \frac{L}{u_x}$, $t = 0$ when charge just enter plates	
Angle of deflection, 0	At time t_f just after leaving the plates,	
	$\theta = \tan^{-1} \frac{V_y}{U_x}$	
Will charge hit plate or leave the plates?	At time t_f just after leaving the plates,	
	$S_{v} > l \rightarrow$ hits plate	
	$s \leq l \rightarrow$ leaves plate	
	$s_y = l \rightarrow just$ nice leave plate	
Conservation of Energy	1 2 1 2	
Electric Potential Energy converted to Kinetic Energy of the charge	$\frac{-mv_f}{2} - \frac{-mv_i}{2} = -q\Delta v_{s_y} = qEs_y$	

Projectile Motion of a Charge Moving in Between Parallel Plates