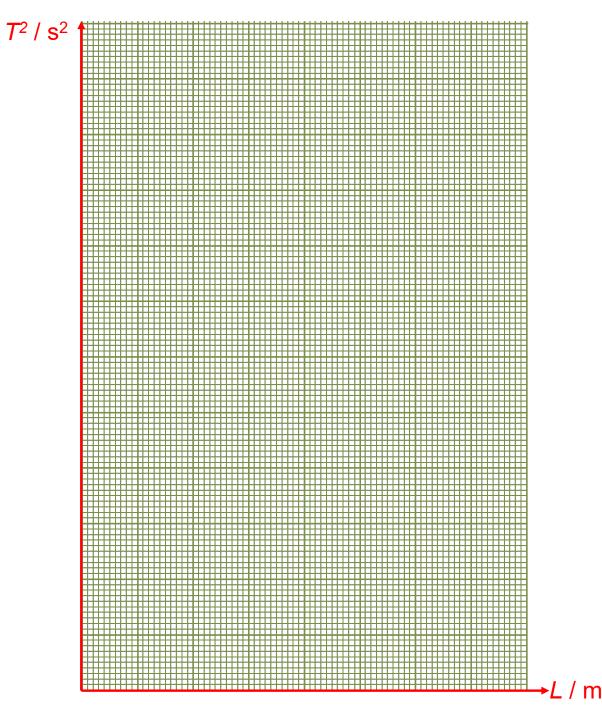
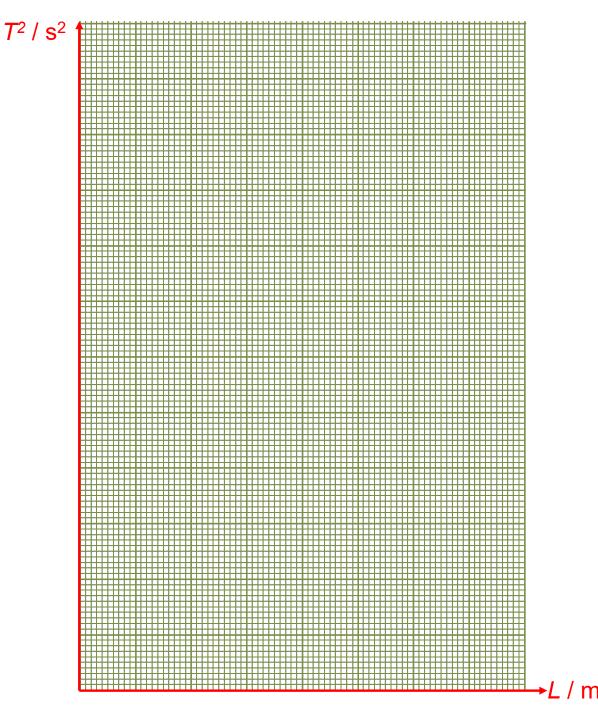

Practical Skills Guide (Graph Drawing and Gradient Calculation)

Graph Drawing


L/m	Time for 20 Oscillations			T	T 2 / 2 2
	t ₁ / s	t ₂ / s	t _{av} / s	T/s	T ² / s ²
0.800	35.8	35.8	35.8	1.79	3.20
0.700	33.5	33.6	33.6	1.68	2.82
0.600	29.9	31.1	30.5	1.53	2.33
0.500	28.3	28.4	28.4	1.42	2.02
0.300	21.7	21.9	21.8	1.09	1.19

1: Draw the axes at the edge of the graph for both axes.

- 1: Draw the axes at the edge of the graph for both axes.
- 2: Label each axis based on the heading in the table. x-axis: *L* / m y-axis: *T*² / s²

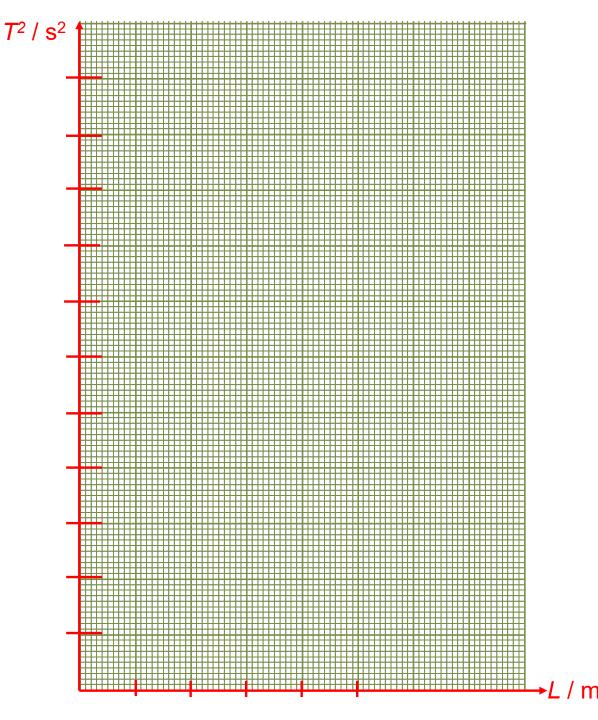


L/m	Time for 20 Oscillations			т/-	T ? / -?
	t ₁ / s	t ₂ / s	t _{av} / s	T/s	T^2 / s^2
0.800	35.8	35.8	35.8	1.79	3.20
0.700	33.5	33.6	33.6	1.68	2.82
0.600	29.9	31.1	30.5	1.53	2.33
0.500	28.3	28.4	28.4	1.42	2.02
0.300	21.7	21.9	21.8	1.09	1.19

- 1: Draw the axes at the edge of the graph for both axes.
- 2: Label each axis based on the heading in the table.
 x-axis: L / m
 y-axis: T² / s²
- 3: Identify the scale to be used for each axis.
 We use the following method: (max value on graph – min value on graph) / (number of intervals)
 We then round up to the nearest appropriate scale

x-axis: (0.800 - 0.300) / 8 = 0.0625Round up to 0.10 for each interval.

y-axis: (3.20 - 1.10) / 12 = 0.175Round up to 0.20 for each interval.

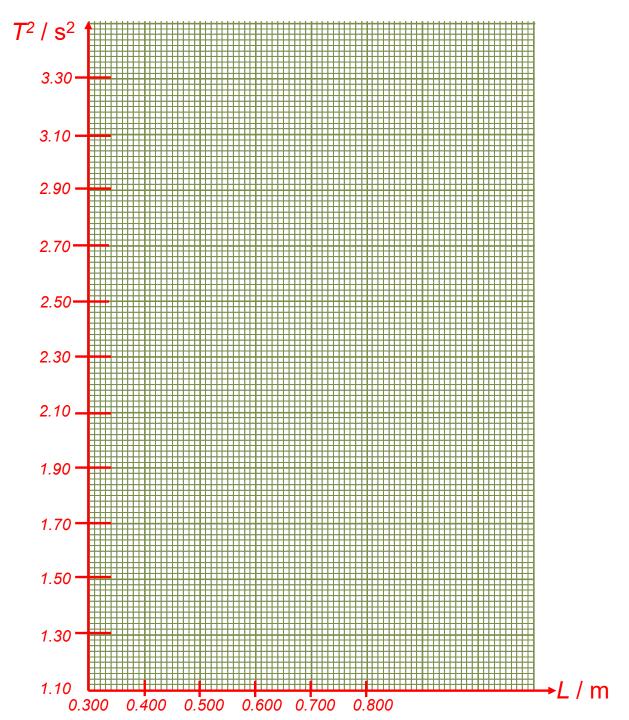

L/m	Time for 20 Oscillations			т/-	T 2 I -2
	t ₁ / s	t ₂ / s	t _{av} / s	T/s	T ² / s ²
0.800	35.8	35.8	35.8	1.79	3.20
0.700	33.5	33.6	33.6	1.68	2.82
0.600	29.9	31.1	30.5	1.53	2.33
0.500	28.3	28.4	28.4	1.42	2.02
0.300	21.7	21.9	21.8	1.09	1.19

- 1: Draw the axes at the edge of the graph for both axes.
- 2: Label each axis based on the heading in the table.
 x-axis: L / m
 y-axis: T² / s²
- 3: Identify the scale to be used for each axis.
 We use the following method: (max value on graph – min value on graph) / (number of intervals)
 We then round up to the nearest appropriate scale

x-axis: (0.800 - 0.300) / 8 = 0.0625Round up to 0.10 for each interval.

y-axis: (3.20 - 1.10) / 12 = 0.175Round up to 0.20 for each interval.

4: Label each interval on the graph i.e. each big square.


L/m	Time for 20 Oscillations			TI	T 2 / -2
	t ₁ / s	t ₂ / s	t _{av} / s	T/s	T^2 / s^2
0.800	35.8	35.8	35.8	1.79	3.20
0.700	33.5	33.6	33.6	1.68	2.82
0.600	29.9	31.1	30.5	1.53	2.33
0.500	28.3	28.4	28.4	1.42	2.02
0.300	21.7	21.9	21.8	1.09	1.19

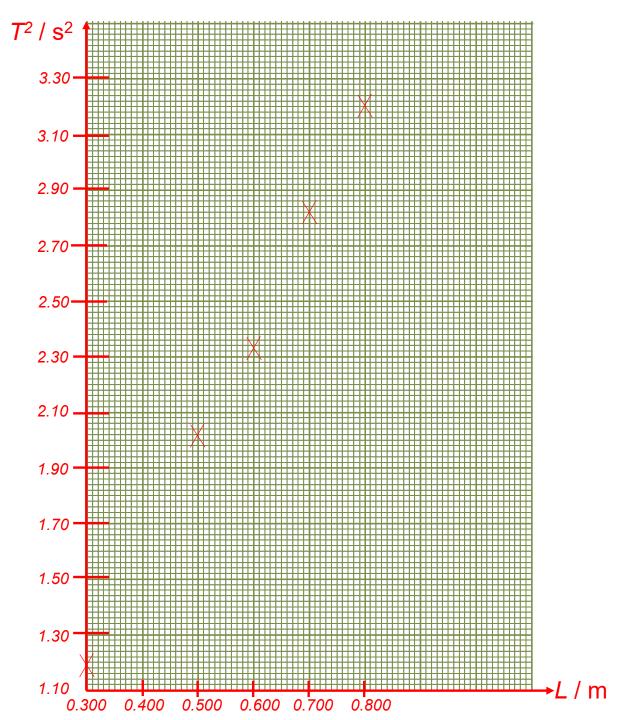
- 1: Draw the axes at the edge of the graph for both axes.
- 2: Label each axis based on the heading in the table.
 x-axis: L / m
 y-axis: T² / s²
- 3: Identify the scale to be used for each axis.
 We use the following method: (max value on graph – min value on graph) / (number of intervals)
 We then round up to the nearest appropriate scale

x-axis: (0.800 - 0.300) / 8 = 0.0625Round up to 0.10 for each interval.

y-axis: (3.20 - 1.10) / 12 = 0.175Round up to 0.20 for each interval.

4: Label each interval on the graph i.e. each big square.

L/m	Time for 20 Oscillations			τ./	T 2 / -2
	t ₁ / s	t ₂ / s	t _{av} / s	T/s	T ² / s ²
0.800	35.8	35.8	35.8	1.79	3.20
0.700	33.5	33.6	33.6	1.68	2.82
0.600	29.9	31.1	30.5	1.53	2.33
0.500	28.3	28.4	28.4	1.42	2.02
0.300	21.7	21.9	21.8	1.09	1.19


- 1: Draw the axes at the edge of the graph for both axes.
- 2: Label each axis based on the heading in the table.
 x-axis: L / m
 y-axis: T² / s²
- 3: Identify the scale to be used for each axis.
 We use the following method: (max value on graph – min value on graph) / (number of intervals)
 We then round up to the nearest appropriate scale

x-axis: (0.800 - 0.300) / 8 = 0.0625Round up to 0.10 for each interval.

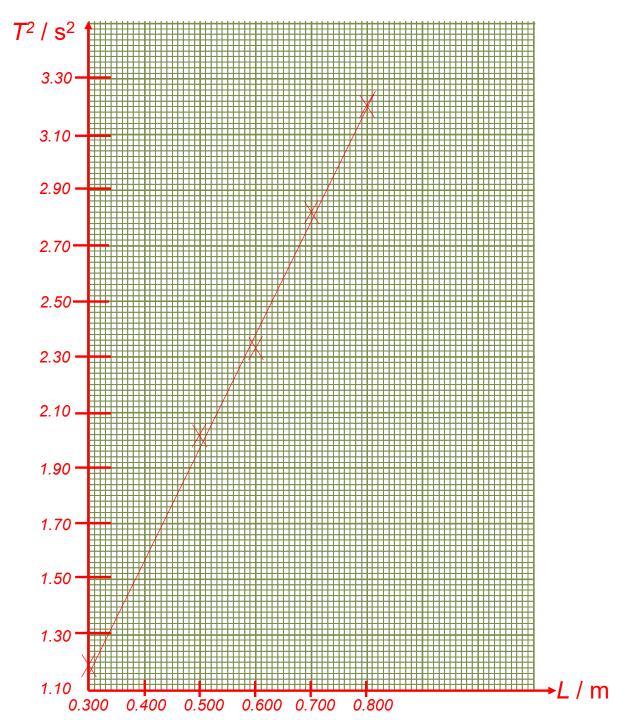
y-axis: (3.20 - 1.10) / 12 = 0.175Round up to 0.20 for each interval.

4: Label each interval on the graph i.e. each big square.

5: Plot the points correctly.

1: Draw the axes at the edge of the graph for both axes.

- 2: Label each axis based on the heading in the table.
 x-axis: L / m
 y-axis: T² / s²
- 3: Identify the scale to be used for each axis.
 We use the following method: (max value on graph – min value on graph) / (number of intervals)
 We then round up to the nearest appropriate scale

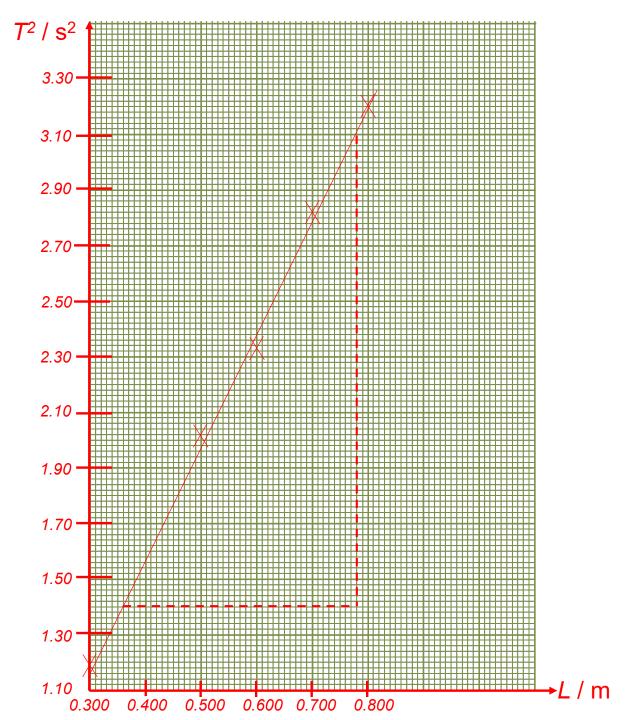

x-axis: (0.800 - 0.300) / 8 = 0.0625Round up to 0.10 for each interval.

y-axis: (3.20 - 1.10) / 12 = 0.175Round up to 0.20 for each interval.

4: Label each interval on the graph i.e. each big square.

5: Plot the points correctly.

6: Draw the best fit line.



Gradient Calculation

Calculate the gradient of the graph. Show your working clearly.

1: Find two coordinates within the plotted points as far apart as possible.

2: Link the two points using dotted lines to form a dotted triangle.

Calculate the gradient of the graph. Show your working clearly.

1: Find two coordinates within the plotted points as far apart as possible.

- 2: Link the two points using dotted lines to form a dotted triangle.
- 3. Label the coordinates chosen on the graph.

Number of decimal places for the coordinates is to the precision of half a small square on each axis.

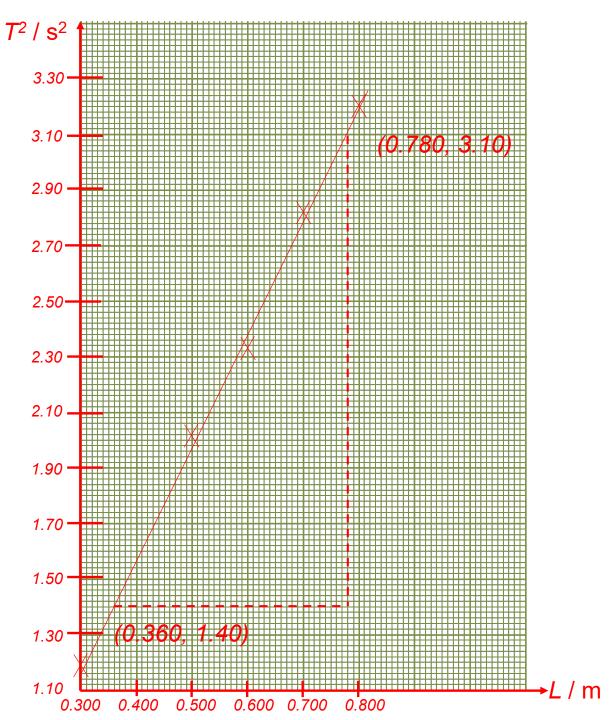
x-coordinate is to 3 decimal place because half the smallest square interval is 0.005.

How to calculate:

- 1 big square has an interval of 0.1 m.
- 1 big square is made of 10 small squares.
- 1 small square thus has an interval of 0.1 / 10 = 0.01 m

 $\frac{1}{2}$ small square will then has an interval of 0.01 / 2 = 0.005 m (3 d.p.)

y-coordinate is to 2 decimal place because half the smallest square interval is 0.01.


How to calculate:

1 big square has an interval of 0.2 s^2 .

1 big square is made of 10 small squares.

1 small square thus has an interval of 0.2 / 10 = 0.02 s^2

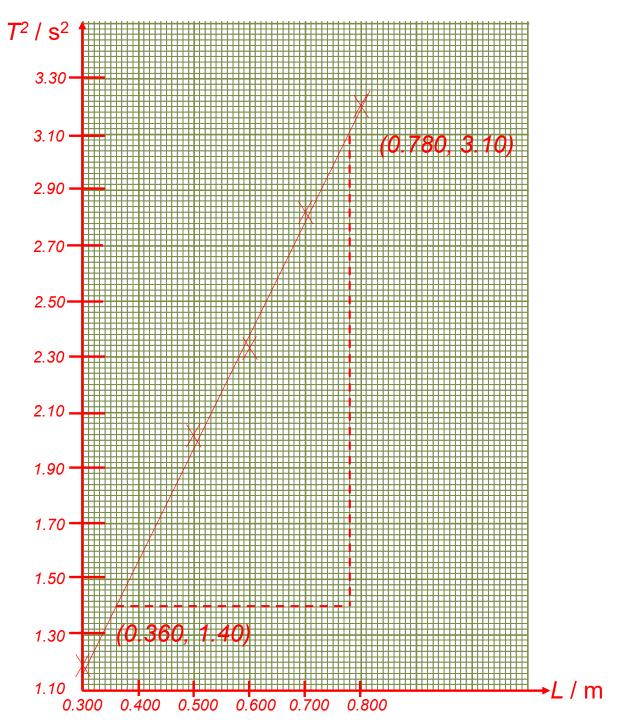
 $\frac{1}{2}$ small square will then has an interval of 0.02 / 2 = 0.01 s² (2 d.p.)

Calculate the gradient of the graph. Show your working clearly.

1: Find two coordinates within the plotted points as far apart as possible.

- 2: Link the two points using dotted lines to form a dotted triangle.
- 3. Label the coordinates chosen on the graph.

Number of decimal places for the coordinates is to the precision of half a small square on each axis.


- x-coordinate is to 3 decimal place because half the smallest square interval is 0.005.
- y-coordinate is to 2 decimal place because half the smallest square interval is 0.01.
- 4: Calculate the gradient.

Gradient = (3.10 - 1.40) / (0.780 - 0.360) = 4.05 s² / m

Note 1: Need to show working (working to follow the coordinates chosen)

Note 2: Answers to 3 sf

Note 3: Have to include unit of gradient where applicable

