2021 Sec 4Exp Pure Chemistry Paper 1 MS

Paper 1 (MCQ) 40 marks

1	С	11	Α	21	A	31	С
2	D	12	В	22	В	32	В
3	Α	13	С	23	В	33	D
4	В	14	С	24	С	34	В
5	Α	15	D	25	С	35	В
6	С	16	D	26	С	36	С
7	D	17	С	27	В	37	С
8	Α	18	С	28	Α	38	В
9	D	19	D	29	D	39	D
10	С	20	В	30	В	40	A

2021 Sec 4Exp Pure Chemistry Paper 2 MS

Qn	Solutions	MS
A1(a)	(i) R and T	Both to score 1m
	(ii) Q	1m
	(iii) Q, R and V	1 1000000
	(iv) S and V	All to score 1m
A1(b)	PbSiO ₃	Both to score 1m
		1m
A2(a)	WY MY	Total: 5m
()	$\begin{pmatrix} H & \begin{pmatrix} X \\ 0 \end{pmatrix} & O & \begin{pmatrix} X \\ X \end{pmatrix} & O & \begin{pmatrix} X \\ X \end{pmatrix} & H \end{pmatrix}$	Correct number of electrons shared – 1m
	XX XX XX	Correct number of valence electrons in all atoms – 1m
		Accept if all electrons shown
A2(b)	 In liquid state, hydrogen peroxide has a <u>simple molecular</u> <u>structure / exist as simple molecules / discrete molecules /</u> <u>neutral molecules</u>; hence 	1m
	there are <u>no free mobile ions and electrons</u> ; in this structure to carry charges and conduct electricity.	1m
A2(d)	(i) 16O, 17O and 18O all have <u>8 electrons and 8 protons</u> showing that they are <u>atoms of the same element</u> ; 16O, 17O and 18O each has <u>different number of neutrons</u> , <u>8, 9, 10 respectively</u> , which shows they are have <u>different number of neutrons</u> .	1m
	number of neutrons; (ii) 16O, 17O and 18O all have 6 valence electrons and hence the three isotopes have the same chemical reactions. Ignore reference made using 8 electrons, answer should be precise to making reference to the number of valence electrons.	1m 1m
A2(e)	[3x2] + [18 x 2] = <u>42</u>	1m
		Total: 8m
A3(a)	 Zinc does not exhibit variable oxidation states like other transition elements / has only one (fixed) oxidation state of +2 in its compounds; Zinc does not formed coloured compounds / do not form 	1m
	coloured solutions when dissolved in water; Zinc has low melting and boiling points / the lowest melting	1m
	and boiling points amongst the transition elements;	1m
	Reject: Zinc has low density Ignore: its elements and/or compounds are not catalysts	(any two)
A3(b)	(i) reagent 1: zinc / zinc oxide / zinc hydroxide / zinc carbonate	1m for reagents

	reagent 2: sulfuric acid	
	Filter the mixture. Heat filtrate till saturation. Cool to allow crystals to form.	1m for brief description
	(ii) reagent 1: <u>aqueous zinc nitrate/chloride (must have aq/sol)</u> reagent 2: <u>aqueous sodium carbonate (or any other Group I carbonate solution)</u>	1m for reagents
	Filter the mixture. Obtain residue. Dry residue with filter papers.	1m for brief description
A3(c)	The <u>height of the precipitate formed remained unchanged</u> on adding dilute nitric acid, indicating that the precipitate formed is due to formation of silver chloride and <u>carbonate ions</u> are not present.	1m to eliminate carbonate ions
	Hence, the anion present in solution P is <u>chloride ion / C/</u>	1m
		Total: 8m
A4(a)	Amide linkage	1m
A4(b)	Carboxyl group/-COOH	1m
A4(c)	Monomer: styrene	1m
		1m
A4(d)	Polypropene/poly(propene)/polypropylene	1m
A4(e)	 Addition polymers are formed from (unsaturated) monomers containing carbon-carbon double bonds while condensation polymers are formed from monomers containing two different functional groups / carboxyl and hydroxyl groups or carboxyl and amine groups. 	1m for each difference clearly described for both types of polymerisation Max 2 differences stated
	In addition polymerisation, no molecules are lost/ no other substances formed when monomers join/bond together / only the polymer is formed during the formation of addition polymers while in condensation polymerisation, small molecules (usually water molecules) are lost / the polymer together with water or small molecules are formed;	
	 The <u>empirical formula of the addition polymer</u> is the <u>same</u> as its <u>monomer</u> while the <u>empirical formula of condensation</u> polymer is not the same as its <u>monomer</u>; 	
	 Addition polymers contain long chains of carbon-carbon atoms / do not contain amide or ester linkages while condensation polymers contain amide or ester linkages; 	
A4(f)	Mr of each repeat unit of Q = 42	

	Total no of repeat unit = 84000/42 = 2000	1m
	Total no of C atoms = 2000(3) = 6000	Total: 8m
		1m
A5(a)	 E₂ - E₁: enthalpy change/ ΔH E₃ - E₁: activation energy for backward reaction 	1m
	 (C + D → A +B) E₃ - E₂: activation energy for forward reaction. 	1m
A5(b)	 (A + B → C +D) The forward reaction is <u>exothermic</u>; as the <u>energy level of the reactants is higher than the energy level of the products</u>; Reject: 	1m 1m
	 energy of reactants to products decreases energy of A & B to C & D decreases energy of bond breaking is lower than energy of bond forming 	
A5(c)	(i) $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$ (ii) $nH_2SO_4 = 1 \times (500/1000) = 0.5 \text{ mol}$	1m
	nKOH = 2 x (200/1000) = 0.4 mol KOH is limiting reactant. KOH:H₂O = 1 : 1	1m
	nH ₂ O = 0.4 mol	1m
	heat produced = 57 x 0.4 = 22.8 kJ	1m
		Total: 9m
A6(a)	(i) Oxides of nitrogen are produced due at high temperature due to the reaction between nitrogen and oxygen in the engine; CO is produced by incomplete combustion of carbon-comtaining fuel in the engine;	1m 1m
	(ii) Dissolve in rainwater to form acid rain / formation of petrochemical smog / depletion of earth's ozone layer (any one)	1m
A6(b)	(i) $2CO(g) + 2NO(g) \rightarrow 2CO_2(g) + N_2(g)$	1m
	(ii) CO is oxidised by gaining oxygen to form CO ₂ . NO is reduced by losing oxygen to form N ₂ . Hence it is a redox reaction.	1m
	Accept: using oxidation number to explain	
		Total: 5m
A7(a)	2HC/+ Zn → ZnC/2+ H2	1m
A7(b)	Experiment B: 100 cm ³ , 0.5 mol/dm ³	1m

	T	
	- Experiment C: 100 cm ³ , 0.25 mol/dm ³	
	accept any answer with lower conc and half the moles of acid compared to Expt B (0.025 mol)	1m
A7(c)	(i) Experiment R	
	Cyperiment K	1m
	By comparing expt P and R using the same concentration and volume of hydrochloric acid, the time taken to collect 10 cm³ of gas for expt R is shorter compared to P, indicating that the variable changed is temperature, where the temperature is higher for expt R since the time taken is shorter.	1m
	(ii) At higher temperature, the reactant particles gain energy, move faster and collide more often with each other / At higher temperature, more particles possess energy equal or higher than the activation energy. Therefore frequency of effective collisions between reacting particles is increased and speed of reaction is increased.	3 points – 2m 1-2 points – 1m
D0(-)		Total: 7m
B8(a)	The equivalence points do not always conicide with neutral	1m
	 <u>In titration 2, equivalence point is pH 8</u> / From the titration graphs, the <u>pH at the equivalence points depends on the strength of the acid and base;</u> 	1m for reasoning
B8(b)	HCI (aq) + NaOH(aq) → NaCI (aq) + H ₂ O (I)	
	Let the concentration of HCI and NaOH be y mol/dm³.	
	(mentioned in qns that conc of both acids and bases have the same concentration)	
	From graph, at the equivalence point, volume of NaOH = 25.0 cm ³	
	No. of moles of NaOH = 25 / 1000 * y = 0.025y mol	
	1 mole of NaOH reacts with 1 mole of HCI	1m
	No. of moles of HCI = 0.025y mol	
	Volume of HCI = $0.025y/y$	
	$= 0.025 dm^3$	
	$= 25 \text{ cm}^3$	1m

B8(c)	(i) The end-point of methyl areas	
	the end-point of methyl orange does not coincide with the equivalence point of the reaction between ethanoic acid and sodium hydroxide and thus will not show a colour change / The pH change of the reaction between ethanoic acid and sodium hydroxide is between pH 7 and pH 12 and the end-point of methyl orange is at pH 4 and thus methyl orange will remain yellow at equivalence point of the reaction.	1m
	(ii) Phenolohthalein	1m
B8(d)	From the graph in titration , <u>hydrochloric acid has a pH value</u> of about 1, indicating that it is a strong acid:	1m
	 From the graph in titration 2/3, ethanolc acid has a pH value of about 3/4, indicating that it is a weak acid; 	1m
B8(e)	(i) H ₂ PO ₄ ⁻ ⇌ H⁺ + HPO ₄ ²- (ii) Na ₂ HPO ₄	1m 1m
		Total: 10m
B9(a)	A: positive terminal B: negative terminal	Both to score 1m
B9(b)	Electrode P: Ag (s) \rightarrow Ag* (aq) + e Electrode Q: Ag* (aq) + e \rightarrow Ag (s)	1m 1m
	Penalise 1m if no state symbols written	
B9(c)	The Universal Indicator turns blue / violet / purple;	1m
	During the electrolysis, the H·ions and Cf ions are discharged at the cathode and anode respectively, leaving behind aqueous sodium hydroxide / hydroxide ions, which is a strong alkali, and hence Universal Indicator turns blue / violet.	1m
B9(d)	Electrode S (cathode): $2H^{+}(aq) + 2e \rightarrow H_{2}(g)$ Electrode R (anode): $2CI^{-}(aq) \rightarrow CI_{2}(g) + 2e$	1m for equations showing same ratio of the gases
	For the <u>same number / moles of electrons</u> transferred, the ratio / volume of hydrogen gas produced is the same as the volume of chlorine gas produced.	
B9(e)	No of moles of Ag deposited at Q = 0.270 / 108 = 0.0025 mol	1m
	Ag : e = 1 : 1 → No of moles of e transferred to R = 0.0025 mol	
	Cl_2 : e = 1:2 \rightarrow No of moles of Cl_2 gas produced = 0.0025 / 2 = 0.00125 mol	1m
	Vol of C/2 gas produced at R = 0.00125 x 24	
	$= 0.0300 \text{dm}^3 / 30.0 \text{cm}^3$	1m
		Total: 10m

B10(a)(i)	(a) no change/solution remains pink;	1m
	(b) grey solid; forms in green solution;	1m, 1m
B10(a)(ii)	Solution remains blue OR no observable/visible change;	1m
	Silver is <u>less reactive</u> than copper, hence <u>unable to displace</u> copper from copper (II) sulfate.	1m
B10(b)	(i) Mass of carbonate / moles of carbonate / Flame intensity / size of carbonate/ duration of heating / temperature of	1m
	surroundings;	1m
		1m
	Ignore "amount of carbonate" (vague)	1m
	(ii) calcium carbonate;	1m
	(iii) 27 cm ³ ;	
	(iv) The faster the rate of decomposition of the metal	
	carbonates, the higher the metal is in Group II; Hence, calcium is above strontium, which is above	
	barium; in the Periodic Table.	
	Darrum, in the remode rable.	
OR		
B10(a)	(i) It has the <u>ester functional group;</u> accept: ester linkage	1m
	(ii) Alcohol	1m
	СН ₃	
	Carboxylic acid	1m
	но —с — сн₃	
B10(b)	Add <u>acidified potassium manganate(VII)</u> to both solutions; If purple solution turns <u>colourless</u> , the <u>sample is middle note / 2-phenylethanol;</u>	1m for correct choice of reagent 1m for correct
	If purple solution remains purple, the sample is top note /	observations
	styrallyl acetate;	1m for correct
		observations
	() Uhan anahan daubla bandi	1m
B10(c)	(i) It has a <u>carbon-carbon double bond;</u>	1m
		1m

	Mass of iodine = 0.4 x 2 x 127 =101.6 g; rej: missing unit	
	No of mole of iodine = 0.4 mol	1m
	No. of mole of end note = 100/250 = 0.4 mol;	
THAN	(iii) 1 mol of end note reacts with 1 mol of iodine.	1m
	(CH ₂) ₇	
	H-C- H H-C- H C= 0	
	(ii) (CH ₂) ₇	