Candidate Name:



# **2024 Mid-Year Examination** Pre-University 3

| H2 CHEMISTRY                                       | 9729/01    |
|----------------------------------------------------|------------|
| Paper 1 Multiple Choice                            | 8 Jul 2024 |
|                                                    | 1 hour     |
| Additional materials: Multiple Choice Answer Sheet |            |
| Data Booklet                                       |            |

## READ THESE INSTRUCTIONS FIRST

#### Do not turn over this question paper until you are told to do so

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and admission number in the spaces provided at the top of this page and on the Multiple Choice Answer Sheet provided.

There are **thirty** questions on this paper. Answer **ALL** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the Multiple Choice Answer Sheet provided.

### Read the instructions on the Multiple Choice Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this question paper.

The use of an approved scientific calculator is expected, where appropriate.

| FOR EXAMINER'S   | S USE |
|------------------|-------|
| TOTAL (30 marks) |       |

1 Use of the Data Booklet is relevant to this question.

Which of the following options contain the same number of molecules as one another?

- 1 750 cm<sup>3</sup> of carbon dioxide gas (measured at r.t.p.)
- 2 1.00 g of oxygen gas
- 3 1.90 cm<sup>3</sup> of ethanol where the density of ethanol is 0.80 g cm<sup>-3</sup>
- **A** 1 and 2 only **B** 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3

2 10 cm<sup>3</sup> of a hydrocarbon was burnt in 150 cm<sup>3</sup> of oxygen. The resultant gaseous mixture contracted by 30 cm<sup>3</sup> when passed through a solution of aqueous sodium hydroxide.

The remaining gas was just sufficient to burn exactly 20 cm<sup>3</sup> of the same hydrocarbon.

Given that all gas volumes were measured at room temperature and pressure, what is the formula of the hydrocarbon?

3 Which of the following statements describe the reaction below correctly?

 $2PCl_5 \rightleftharpoons PCl_4^+ + PCl_6^-$ 

- 1  $PCl_4^+/PCl_6^-$  is a conjugate acid-base pair.
- 2  $PCl_5$  is both a Lewis acid and Lewis base.
- 3  $PCl_5$  is both an Arrhenius acid and Arrhenius base.
- A
   2 only
   B
   3 only
   C
   1 and 2 only
   D
   1 and 3 only
- 4 The table belows shows the fifth, sixth, seventh and eighth ionisation energies of an element in the third period.

|                                             | 5th  | 6th  | 7th   | 8th   |
|---------------------------------------------|------|------|-------|-------|
| ionisation energy<br>/ kJ mol <sup>-1</sup> | 7000 | 8500 | 27110 | 31720 |

Which is the identity of the element?

**A** P **B** S **C** C*l* **D** Ar

5 Which of the following options are correct?

|   | molecule        | shape           | polarity  |
|---|-----------------|-----------------|-----------|
| 1 | $BeCl_2$        | bent            | non-polar |
| 2 | NO <sub>2</sub> | bent            | polar     |
| 3 | SO <sub>3</sub> | trigonal planar | non-polar |

- **A** 1 only **B** 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3
- **6** Which of the following compounds is expected to have the greatest degree of covalent character?

| <b>A</b> ( | CaO | В | CaS | С | MgO | D | MgS |
|------------|-----|---|-----|---|-----|---|-----|
|------------|-----|---|-----|---|-----|---|-----|

7 10 cm<sup>3</sup> of a volatile liquid **E** turns into 0.050 dm<sup>3</sup> of vapour at 50 °C and 1 bar. **E** is known to have an  $M_r$  of y.

What is the density of liquid **E**, in g cm<sup>-3</sup>?

- $\mathbf{A} \qquad \frac{100000 \times 0.050 \times 10^{-3} \times y}{8.31 \times 323 \times 10}$
- $\mathbf{B} \qquad \frac{100000 \times 0.050 \times 10^{-3}}{8.31 \times 323 \times 10 \times y}$
- $c \qquad \underline{100000 \times 0.050 \times 10^{-6} \times y}_{8.31 \times 323 \times 10}$
- $\mathbf{D} \qquad \frac{100000 \times 0.050 \times 10^{-6} \times 10}{8.31 \times 273 \times y}$

8 Three identical flasks each contain the same mass of gases  $G_1$ ,  $G_2$  and  $G_3$  respectively. The temperature and pressure of each flask are as follows:

|                 | G <sub>1</sub> | G <sub>2</sub> | G <sub>3</sub> |
|-----------------|----------------|----------------|----------------|
| temperature / K | Т              | Т              | 2T             |
| pressure / Pa   | р              | 2р             | р              |

Assuming ideal gas behaviour, which of the following is a correct representation of the relative molecular masses of the three gases?

 $\mathbf{A} \qquad \mathbf{G}_1 < \mathbf{G}_3 < \mathbf{G}_2$ 

**B**  $G_2 < G_1 < G_3$ 

 $G_2 < G_3 < G_1$ 

- $D = G_3 < G_1 < G_2$
- 9 Which of the following reactions is non-spontaneous at all temperatures?

  - $\mathbf{C} \qquad \mathbf{P}(g) \to 2\mathbf{Q}(g) \qquad \qquad \Delta H < 0$
  - $$\label{eq:relation} \begin{split} \mathbf{D} \qquad \mathbf{R}(g) + \mathbf{S}(g) \to \mathbf{T}(g) \qquad \qquad \Delta H > 0 \end{split}$$
- **10** Hess' Law can be used to determine the average C-H bond energy in  $CH_4(g)$ .

What information is necessary to perform the calculation?

- **A**  $\Delta H_{\text{formation}}(CH_4(g))$  only
- **B**  $\Delta H_{\text{formation}}(CH_4(g)), \Delta H_{\text{atomisation}}(H_2(g)), \Delta H_{\text{atomisation}}(C(s))$
- **C**  $\Delta H_{\text{formation}}(CH_4(g)), \Delta H_{\text{atomisation}}(H_2(g)), \text{Bond Energy (C-C)}$
- **D**  $\Delta H_{\text{combustion}}(CH_4(g)), \Delta H_{\text{combustion}}(C(s)), \Delta H_{\text{combustion}}(H_2(g))$

11 Nepetalactone is the active ingredient found in catnip.



Which product is formed from an electrophilic addition reaction with nepetalactone?



12 Vasopressin is a mammalian hormone released from the pituitary gland of the body. It is a protein made up of many amino acids, two of which have formed a S–S covalent bond.



Which statements about vasopressin are correct?

- 1 Vasopressin is made of 9 amino acid subunits.
- 2 There are eight chiral carbons in vasopressin.
- 3 Only two of the amino acids that make up vasopressin have side-chains containing O.
- **A** 2 only **B** 1 and 3 only **C** 2 and 3 only **D** 1, 2 and 3

13 Which set of reagents will produce phenyl propanoate under suitable conditions?



14 Gel electrophoresis is a technique used to identify amino acids obtained from peptide hydrolysis. The sample is loaded onto the middle of the gel and placed across a potential difference.

The following tripeptide, Lys-Gly-Asp, was completely hydrolysed using acid, then buffered to pH 7 at 25 °C.



The following results were obtained:



At which position on the gel would the spot for Lys be formed?

15 Which of the following molecules can exhibit cis-trans isomerism?



16 Compounds **U** and **V** have the following structures.



Which reagents and conditions can be used to distinguish them?

- 1 ethanolic AgNO<sub>3</sub>, warm
- 2  $K_2Cr_2O_7$ , warm
- 3 Fehling's reagent, warm
- **A** 2 only **B** 3 only **C** 1 and 2 only **D** 2 and 3 only

17 The kinetics of a reaction was investigated, and the following results obtained:

| run | [ <b>W</b> ] / mol dm <sup>-3</sup> | [ <b>X</b> ] / mol dm <sup>-3</sup> | initial rate<br>/ mol dm <sup>-3</sup> s <sup>-1</sup> |
|-----|-------------------------------------|-------------------------------------|--------------------------------------------------------|
| 1   | 0.020                               | 0.015                               | 6.40 × 10 <sup>-3</sup>                                |
| 2   | 0.020                               | 0.030                               | 2.56 × 10 <sup>-2</sup>                                |
| 3   | 0.030                               | 0.030                               | $3.84 \times 10^{-2}$                                  |

 $2\mathbf{W} + \mathbf{X} \rightarrow \mathbf{Y} + 2\mathbf{Z}$ 

What is the numerical value of the rate constant for this reaction?

| Α | 0.213 | В | 0.320 | С | 21.3 | D | 1420 |
|---|-------|---|-------|---|------|---|------|
|---|-------|---|-------|---|------|---|------|

**18** A solution of acidified potassium manganate(VII) was added to ethanedioate ions,  $C_2O_4^{2-}$ , and the reaction is as follows:

 $2MnO_4^{-}(aq) + 5C_2O_4^{2-}(aq) + 16H^{+}(aq) \rightarrow 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$ 

It is known that Mn<sup>2+</sup> catalyses the above reaction.

Which of the following graphs best describes the reaction?



**19** The Haber process is used in the industrial production of ammonia.

 $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \qquad \Delta H < 0$ 

Which of the following options show a correct operating condition with its rationale?

|   | operating condition |                                             |                                                           | rationale |              |   |                 |
|---|---------------------|---------------------------------------------|-----------------------------------------------------------|-----------|--------------|---|-----------------|
| 1 | 450 °C              | high temperature increases rate of reaction |                                                           |           | of reaction  |   |                 |
| 2 | 450 atm             |                                             | high pressure shifts position of equilibrium to the right |           |              |   |                 |
| 3 | finely-divided Fe   |                                             | lowers activation energy to increase rate of reaction     |           |              |   | ate of reaction |
| Α | 3 only B            | 1 ar                                        | nd 2 only                                                 | С         | 1 and 3 only | D | 1, 2 and 3      |

**20** Sulfuric acid can be produced from the Contact process, which involves an equilibrium reaction to produce sulfur trioxide, SO<sub>3</sub>.

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$   $K_c = 280 \text{ mol}^{-1} \text{ dm}^3$ 

What is the amount of  $O_2$  used to react with 0.80 mol of  $SO_2$  initially, given that 0.60 mol of  $SO_3$  is obtained at equilibrium in a 1 dm<sup>3</sup> vessel?

| <b>A</b> 0.31 mol <b>B</b> 0.33 mol <b>C</b> 0.61 mol <b>D</b> 0. | .63 mol |
|-------------------------------------------------------------------|---------|
|-------------------------------------------------------------------|---------|

21 Which of the following conjugate acid-base pairs give a pH of 4.70 (at 25 °C) when at maximum buffer capacity?

| Α | HOCN / -OCN                                             | p <i>K</i> <sub>b</sub> of ⁻OCN = 10.54         |
|---|---------------------------------------------------------|-------------------------------------------------|
| В | CH <sub>3</sub> COOH / CH <sub>3</sub> COO <sup>-</sup> | $pK_b$ of $CH_3COO^- = 9.30$                    |
| С | $H_2PO_4^- / HPO_4^{2-}$                                | $pK_b$ of HPO <sub>4</sub> <sup>2-</sup> = 6.79 |
| D | HCN / CN⁻                                               | p <i>K</i> ₀ of CN⁻ = 4.70                      |

**22** The pH curve below shows how pH changes when 20.0 cm<sup>3</sup> of 0.20 mol dm<sup>-3</sup> base is titrated against a 0.10 mol dm<sup>-3</sup> acid.



Which of the following statements regarding this titration is incorrect?

- **A** This is a weak base–strong acid titration.
- **B** The solution at equivalence point is acidic.
- **C** The base is monoprotic and the acid is diprotic.
- **D** A buffer solution is formed when 30 cm<sup>3</sup> of the acid is added.
- 23 The table below gives the  $pK_w$  values of pure water at different temperatures:

| temperature / °C | р <i>К</i> <sub>w</sub> |
|------------------|-------------------------|
| 25               | 14.0                    |
| 50               | 13.3                    |

Four solutions of nitric acid at various concentrations were prepared separately, and their pH or pOH values measured at different temperatures.

Which of the following solutions of nitric acid has the greatest [H<sup>+</sup>]?

|   | pH or pOH | measured at |
|---|-----------|-------------|
| Α | pH = 2    | 25 °C       |
| В | pH = 2    | 50 °C       |
| С | pOH = 12  | 25 °C       |
| D | pOH = 12  | 50 °C       |
|   |           |             |

24 40 cm<sup>3</sup> of 0.60 mol dm<sup>-3</sup> lead(II) nitrate solution was added into a 20 cm<sup>3</sup> solution containing a mixture of Cl<sup>-</sup>, Br<sup>-</sup>, and I<sup>-</sup> ions, each with the same concentration of 0.01 mol dm<sup>-3</sup>.

| salt              | K <sub>sp</sub> value at 25 °C |
|-------------------|--------------------------------|
| lead(II) chloride | 1.7 × 10⁻⁵                     |
| lead(II) bromide  | $6.6 	imes 10^{-6}$            |
| lead(II) iodide   | 9.8 × 10⁻ <sup>9</sup>         |

Which one of the following statements is correct?

- A No precipitate will form.
- **B** Only PbI<sub>2</sub> precipitate will form.
- **C** A mixture of PbI<sub>2</sub> and PbBr<sub>2</sub> precipitates will form.
- **D** All three precipitates,  $PbI_2$ ,  $PbBr_2$ , and  $PbCl_2$  will form.
- 25 Which of the following statements about Group 2 elements is incorrect?
  - 1 BeC*l*<sub>2</sub> is able to act as a Lewis acid because Be has energetically-accessible vacant orbitals
  - 2 Be has a lower melting point than Mg as it has fewer valence electrons delocalised.
  - 3 Mg loses its electrons more readily than Ca.
  - 4 MgCO<sub>3</sub> decomposes at a lower temperature compared to CaCO<sub>3</sub>.
  - **A** 1 and 2 only **B** 1 and 4 only **C** 2 and 3 only **D** 2 and 4 only

| element      | pH of solution when oxide is added to water | pH of solution when chloride<br>is added to water |  |  |  |
|--------------|---------------------------------------------|---------------------------------------------------|--|--|--|
| <b>E</b> > 7 |                                             | = 7                                               |  |  |  |
| F            | = 7                                         | < 7                                               |  |  |  |
| G            | < 7                                         | < 7                                               |  |  |  |

**26 E**, **F** and **G** are elements from Period 3. The following observations are made when their respective oxides and chlorides are added to water at 25 °C.

What could be the identities of E, F and G?

|   | E  | F  | G  |
|---|----|----|----|
| Α | Na | Al | Р  |
| В | Na | Р  | Al |
| С | Si | Р  | Al |
| D | Р  | Na | Si |

#### 27 Use of the Data Booklet is relevant to this question.

Vanadium ions of different oxidation states exhibit a range of different colours in water:

| ion             | VO <sub>2</sub> + | VO <sup>2+</sup> | V <sup>3+</sup> | V <sup>2+</sup> |
|-----------------|-------------------|------------------|-----------------|-----------------|
| oxidation state | +5                | +4               | +3              | +2              |
| colour          | yellow            | blue             | green           | violet          |

When excess of a metal was added to an aqueous solution of  $VO_2^+$ , the yellow solution turned green.

What is the identity of the metal?

**A** Mg **B** Zn **C** Sn **D** Ag

28 Use of the Data Booklet is relevant to this question.

An electrolytic cell was set up with an anode made of Sn, a cathode made of Ni, and an aqueous solution of SnSO<sub>4</sub>.

A current of 2.4 A is passed through the cell for 4.2 hours.

What is the change in mass of the cathode?

| Α | -22.3 g | В | 0 g | <b>C</b> +11.0 g | D | +22.3 g |
|---|---------|---|-----|------------------|---|---------|
|---|---------|---|-----|------------------|---|---------|

**29** Use of the Data Booklet is relevant to this question.

Which of the following is the strongest reducing agent?

- A Cu⁺
- B Pb
- **C** V<sup>3+</sup>
- D [Fe(CN)<sub>6</sub>]<sup>3-</sup>
- 30 Which of the following titanium compounds is **not** likely to exist?
  - A TiO<sub>2</sub>
  - B K<sub>3</sub>TiF<sub>6</sub>
  - C Ti<sub>2</sub>O<sub>3</sub>
  - D K<sub>2</sub>TiO<sub>4</sub>

#### END OF PAPER 1

### **BLANK PAGE**