SAJC JC2 H1 Physics

Prelim 2024 Paper 2 Mark Scheme

	Section A	
1 (a)(i)1	Intercept on graph/ line does not pass through origin	[1]
2	Scatter of readings about best fit line	[1]
(ii)	Correction for zero error (0.05 A) explained	[1]
	Use of <i>V</i> and corrected <i>I</i> values from graph Resistance = $V/I = 22.2 \Omega$ (e.g. from 4.0 / 0.18, where 0.18 is the corrected <i>I</i> value)	[1] [1]
(b)	P = V// = 6.8 / 0.64 = 10.625	[1]
(U)	R = V / I = 0.8 / 0.04 = 10.023	נין
		[1]
	$R = 10.6 \pm 0.3 \Omega$	[1]
	Total =	8
2 (a)	The gravitational farms of attraction between two point manages is preparticulate	[4]
2 (d)	the <u>product</u> of their masses and inversely proportional to the <u>square of their</u> <u>separation</u> .	[']
(b)	At 8200 km from centre of Earth, $F = 6.0$ N	
	$F = GMm / r^2$ 6.0 - (GM x 1) / (8200 x 10 ³) ²	
	$M_1 = 6.0486 \times 10^{24} \text{ kg}$	[1]
	At 16000 km from contro of Earth $E = 1.9 \text{ N}$	
	$F = GMm / r^2$	
	$1.8 = (GM \times 1) / (16000 \times 10^3)^2$	[4]
	$M_2 = 6.9085 \text{ x}^{-1} \text{ 0}^{-1} \text{ kg}$	[1]
	Average mass M = 6.48×10^{24} kg.	[1]
	Total =	4
3 (a)	time spent between plates: $t = L/v = 10 \times 10^{-2} / 6.5 \times 10^{5}$ $= 1.54 \times 10^{-7} s$	[1]
(b)	F = qE = ma	
	$a = \frac{qE}{m} = \frac{(1.6 \times 10^{-19})(1.25 \times 10^{3})}{(1.67 \times 10^{-27})}$ = 1.20 x 10 ¹¹ m s ⁻²	[1]

	Direction of acceleration toward the <u>right</u> (lower potential, metal plate B)			
(c)	In the direction from plate A to B, (where there is a constant acceleration due to the uniform e-field), $V_{\perp} = u + at = 0 + at$			
	$= 0 + (1.20 \times 10^{11})(1.54 \times 10^{-7})$ = 18480 = 1.85 x 10 ⁴ m s ⁻¹			
	speed = $\sqrt{V_{\perp}^2 + V_{initial}^2}$			
	$= \Box (18480^2) + (6.5 \times 10^5)^2$ = 650262 = 6.5 × 10 ⁵	[1], ecf		
(d)	Fig. 6.1 (not to scale) {no need to draw the red path, for illustration purposes only}	[1]		
	(dotted path not required for answer) Total =	6		
		-		
4 (a)(i)	Using <u>Fleming Left hand rule</u> , the magnetic <u>force</u> will <u>always</u> be <u>perpendicular</u> to the direction of the charged particle's <u>velocity</u>	[1]		
	The magnetic force provides for the centripetal force.	[1]		
(ii)	Negative	[1]		
(iii)	Magnetic force provides the centripetal force, Bqv = q =	[1]		
	q α (since m, B, v are constants) so = = 2	[1]		
		[1]		
(b)(i)	As particle X collides with the gas particles, its magnitude of <u>velocity v</u> will gradually <u>decrease</u> .	[1]		

(ii)1.	$v = r\omega$, where $\omega = $,	[1]		
	V = r $T = 2\pi ()$			
	Using $r = , T = 2\pi()$			
	Τ=			
		[1]		
2.	For the tau particle,			
	$m = 3000(9.11 \times 10^{-31}) = 2.733 \times 10^{-27} \text{ kg},$			
	B = 1.0 T, $q = 1.6 \times 10^{-19}$ C.			
	$T = = 1.07 \times 10^{-7} \text{ s}$ (time for 1 complete revolution),	[1]		
	which is larger than 2.9×10^{-13} s.	[1]		
	It <u>cannot</u> be a tau particle as it <u>does not live long enough</u> to make the orbits shown in Fig. 4.2. (since it would have decayed to something else before it can even make	[1]		
	1 complete revolution!)			
	Total =	12		
5 (a)(i)	The nucleus (volume) is very small compared to the atom	[1]		
5 (a)(i)	The fucieus (volume) is very <u>smail compared to the atom</u>	[']		
(ii)	The nucleus is <u>charged</u>			
	The mass is <u>concentrated</u> in a small region/volume/core/nucleus	[1]		
(b)(i)	Nuclear fusion is the process where two light/small puckei are combined to produce	[1]		
(0)(1)	a heavier/larger nucleus with the release of energy.	[1]		
(ii)	A	[1]		
	binding energy			
	per nucleon			
	0			
	1 56 A 250			
(iii)1.	X shown at value of A at <u>56</u> at the <u>peak</u> of graph	[1]		
2.	Y shown at value of A close to 1	[1]		
		1.1		
*(iv)	energy from 1 nucleus of Z = $(1.77 \cdot 10^{13}) / (6.02 \cdot 10^{23}) = 2.94 \cdot 10^{-11} \text{ J}$ {since qn gave "1 mol of Z" releases 1.77 x 10 ¹³ J of energy}	[1]		
	nucleon number of $Z = 93 + 139 + 2 - 1 = 233$	[1]		
	From: E released = BE of products (Sr & Xe) – BE of reactants (Z).			
	Thus BE of Z = $[(1.25 + 1.81) \cdot 10^{-10}] - 2.94 \cdot 10^{-11}$			
	$= 2.77 \cdot 10^{-10} \text{ J}$	[1]		
	binding energy per nucleon			
	$= (2.77 \cdot 10^{-10}) / (233) = 1.189 \times 10^{-12} \text{ J}$			

	= 1.189 x 10 ⁻¹² J / (10 ⁶ x 1.6 x 10 ⁻¹⁹) MeV	[1]
	- 7 43 MeV	
(c)	Current ratio 2 Y to 1 Zr, so initially there was 3 Y.	
	$\frac{N}{N_o} = \frac{2}{3} = \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}}$	
	$=\left(\frac{1}{2}\right)^{\frac{t}{2.7days}}$	
	<i>n</i> = 0.585	[1]
	$lg \frac{2}{3} = lg \frac{1}{2} \times \frac{t}{t_{1/2}}$ or $t = n \times t_{1/2} = 0.585 \times 2.7$ days	[1]
		ניו
	t = 1.58 or 1.6 days	
(d)	O Ne $(9.8 \times 10^{10})(1.6 \times 10^{-19})$	
(4)	$I = \frac{1}{2} = $	[1]
	t t 2×60	1.1
	$= 1.31 \times 10^{-5} \text{ A}$	
	= 131 pA (3 st) (where p = prefix called 'pico' = 10 ⁻¹²)	[1]
	Total =	16

6 (a)(i)	From 0 ms to 45 ms, the rate of increase of the radius R of fireball <u>decreases</u> with time (since gradient becomes gentler).			
	From 45 ms to 60 ms, the rate of increase is constant (since constant gradient).	[1]		
(a)(ii)	With a length and width of 12 m, the fireball will take a <u>maximum of 25 ms</u> to travel from one end of the room to the other (or <u>max of 4.5 ms</u> from the middle of the room to one end)	[1]		
	leaving very little time (for the fire-fighter) to react.	[1]		
(b)(i)1	When $t = 40$ ms, lg $t = \lg 40 = 1.60$			
	When $R = 14.6$ m, lg $R = $ lg $14.6 = 1.16$ (Accept R from 14.4 to 14.6 m)	[1]		
	The point is plotted in the graph below (circled).	[,1]		

	1.3				
	lg (<i>R</i> /m)				
	1.2				
				8	
	1.1				
	1.0				
	0.9				
	the equation:	76 290100	novrtúpelina	lg (t/ms)	
	Correct best fit line dra (balance number of po	awn pints above and	below the line)		[1]
(b)(ii)	Gradient = $(1.245 - 0.)$ = 0.40	925) / (1.80 – 1.	.00)		[1] [1]
(b)(iii)	From given eqn $R^n =$	<i>k t ^m</i> ,			
	$\begin{bmatrix} n & \text{ig } R = n & \text{ig } t + \text{ig } R \\ \text{ig } R = (m/n) & \text{ig } t + (1/n) \\ \end{bmatrix}$	i) lg <i>k</i>			[1]
	Thus gradient = (m/n)	= 0.40 (from (l	o)(ii) value)		[1]
	I he two smallest integ	jers that would g	give a ratio of 0.40 is	n = 5 and $m = 2$.	[1]
(c)	By taking values of R^5/V for the 5 data points at $t = 40$ ms, <u>c can be shown to be a</u> [: <u>constant.</u>			[2]	
	Volume V/m ³	<i>R</i> / m	$c = R^{5}/V$ c / m^{2}		
	12.5 × 10⁻₃	14.6	5.31 × 10 ⁷	-	
	10.0 × 10 ⁻³	14.0	5.38 × 10 ⁷	-	
	7.5 × 10⁻₃	13.2	5.34 × 10 ⁷		
	5.0 × 10 ⁻³	12.2	5.41 × 10 ⁷		
	2.5 × 10⁻₃	10.6	5.35 × 10 ⁷		[1]
				_	
	For all 5 sets of readir constant at $t = 40$ ms	ngs, the <u>value of</u> (within limits of e	c is approximately the experimental error).	<u>ne same</u> . Hence, <i>c</i> is	
			,		
				l otal =	14

(b)(i)2

	Section B	
7 (a)(i)	$T_y = 4.8 \sin 30^\circ = 2.4 \text{ N}$	[1]
(ii)	Taking moments about the hinge, Sum of CW moments = sum of ACW moments $(W \times 0.60) + (0.30 \times 0.80) + (T_y \times 1.2) = (8.2 \times 0.50)$ W = 1.6 N	[2] [1]
(iii)	Hor component of hinge force = $T_x = 4.8 \cos 30^\circ = \frac{4.2 \text{ N}}{100000000000000000000000000000000000$	[1]
(iv)	From EPE = $\frac{1}{2}$ Fx $0.32 = \frac{1}{2}$ (8.2)(x) x = compression = 0.078 m	[1] [1]
(v)1.	Decrease in GPE = mg \otimes h = (0.30)(0.090) = <u>0.027 J</u>	[1]
2.	By COE, Loss in GPE = gain in KE of block $0.027 = (0.044) - KE_A$ $KE_A = 0.017 \text{ J} = \frac{1}{2} \text{ mv}_A^2$ Thus $v_A^2 = (0.017 \text{ x } 2)/(0.30/9.81)$ $v_A = \underline{1.1 \text{ m s}^{-1}}$ OR $KE_B = 0.044 \text{ J} = \frac{1}{2} \text{ mv}_B^2 = \frac{1}{2} (0.30/9.81) \text{ v}_B^2$ Thus $v_B^2 = 2.88$	[1] [1] [1] [1]
	From $v^2 = u_A^2 + 2a_ys_y$ 2.88 = $u_A^2 + 2$ (9.81)(0.090) u_A = speed at A = <u>1.1 m s⁻¹</u>	[1] [1]
(vi)	Resultant force = gravitational force/ weight is vertical only (Hence no resultant force in horizontal direction)	[1]
(vii)	v_{Y} 0 t_{A} Straight line with positive gradient starting from non-zero value of v _Y at time t _A	[1]
(b)(i)1.	Acceleration = gradient of v-t = $(0.30 - 0.12)/(0.35 - 0.15)$ = 0.90 m s ⁻²	[1]
2.	By PCLM, $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ $(0.25 \times 0.48) + (0.75 \times 0.12) = (0.25 v) + (0.75 \times 0.30)$ $v = (-)0.060 \text{ m s}^{-1}$	[1] [1]

	OR		
	$u_1 - u_2 = v_2 - v_1$ (since elastic collision)		
	$(0.40 \ 0.12) = (0.00 \ 0)$		
	OR Tatal KE hafara - tatal KE aftar		
	Total KE before = total KE after		
(ii)	0.5		
	v/ms ⁻¹		
	0.3		
	0.1		
	0		
	-0.2		
	-0.3		
	_0.5		
	horizontal line from (0, 0.48) to (0.15, 0.48)	[1]	
	horizontal line from (0.35, –0.06) to (0.5, –0.06)	[1]	
	straight line between (0.15, 0.48) and (0.35, –0.06)		
8 (a)	Ratio of potential difference to current.	[1]	
(b)(i)	$From P = \frac{1}{2}$		
(I)(I)	$36 = 12^2/R$	[1]	
	$R = \underline{4.0 \ \Omega}$	[1]	
(ii)	Straight line from origin then curve (downwards) in correct direction (I-V graph of	[1]	
(11)	filament)	ניז	
	Line passes through 12 V, 3.0 A (since R = 4 Ω), with vertical axis labelled	[1]	
	{the resistance at 6V is unknown and therefore the curve does not need to pass		
	through any specified point}		
(iii)	$oI_{1} = (4.9 \times 10^{-7})I_{1}$		
()	From R = 4.0 = $\frac{p_{L}}{(d)^2} = \frac{(1.5 \times 10^{-7})L}{(0.54/1000)^2}$	[1]	
	$\pi(\frac{1}{2})$ $\pi(\frac{1}{2})$	[4]	
	L = 1.87 m	ניו	
(c)(i)	Since resistance is ratio of V/I at a point, and I increases more rapidly than V,	0 or	
	Resistance of C <u>decreases</u>	[2]	
(ii)	At $V = 4 V$. current = 2.00 mA	[1]	
()	Resistance = $V/I = 4 / 0.002 = 2000 \Omega$	[1]	

9

End of mark scheme