
Web Applications
Name: __________________________ () Class: _________ Date: _________

Lesson 1: Hypertext Transfer Protocol

Instructional Objectives:

By the end of this task, you should be able to:

● State that the Hypertext Transfer Protocol (HTTP) is the protocol used by

browsers to communicate with web servers

● State that under HTTP, each request must start by specifying a HTTP method

● State that GET and POST are examples of HTTP methods

● State that under HTTP, each response starts by specifying a HTTP status

code

● State that 200 (OK) and 404 (Not Found) are examples of HTTP status codes

● Use the Developer Tools of a web browser to examine the raw contents of

HTTP requests and HTTP responses

● Use the socket module in Python to send and receive basic HTTP requests

and HTTP responses

The World Wide Web (WWW) and Hypertext Transfer Protocol (HTTP)

You have already learnt how two programs can communicate over a network using
Internet sockets. However, since sockets only transfer raw bytes and have no built-in
ways to indicate the type of data being sent or why, we usually need to define an
additional protocol that is appropriate to the application being developed.

For instance, in a chat application, we might design a protocol that limits each chat
message to a single line and indicates the end of a complete chat message with a
newline character \n. However, for a more complex Tic-Tac-Toe game, each
message may need to start with one of several possible commands (e.g., b'MOVE'
or b'END') to communicate what each player wants to do in the game.

In 1990, a computer scientist named Tim-Berners Lee working at the European
Organisation for Nuclear Research (also known as CERN) proposed another kind of
application to facilitate the sharing and management of information. The application
would be asymmetric with very different client and server programs. Users would be

CPDD Computer Education Unit Version: Dec 2018
1

Web Applications
able to run the client program and request for documents from computers running
the server program using one of several possible commands. The documents sent
over would also be written in a new computer language to facilitate hyperlinking,
which is the ability to reference one document from another in an easy-to-follow
manner.

Tim-Berners Lee's proposal was tremendously successful, and today, we call this
application the World Wide Web (WWW) or just the web. To use the web, we often
use an all-in-one program called a web browser that serves as both a client for
requesting documents from web servers as well as a viewer for the documents that
are sent over. In particular, web browsers are designed to view documents written
using the Hypertext Markup Language (HTML). In turn, the protocol used to
request for such documents is named the Hypertext Transfer Protocol (HTTP).

As originally designed, requests and responses made using HTTP are not encrypted
and can be read or modified by any party involved in routing that data across the
Internet. To prevent this, web requests and responses can be encrypted using an
extended version of HTTP named HTTPS (HTTP Secure). However, HTTPS can be
more difficult to set up compared to plain HTTP, so for learning purposes we will
focus on plain HTTP only. Nevertheless, be aware that HTTPS is usually preferred
and is in fact required for newer versions of HTTP.

Locating Web Documents

To request for a web document, you need to give a web browser three things:

1. The IP address or domain name of the host server that has the document.

2. The port number that the web server program is listening on.

3. The full name of the document being requested. This is called the path.

CPDD Computer Education Unit Version: Dec 2018
2

Web Applications
All three pieces of information are supplied to the web browser using a single string
called a Universal Resource Locator (URL). For web documents, URLs typically
start with a scheme that is either http or https depending on whether HTTP or
HTTPS is being used, followed by a colon and two slashes, the host IP address or
domain name, an optional colon and port number, then finally the path. In this
context, the scheme is a string that specifies which protocol to use.

If the second colon and port number are left out, a default port number is used
instead. The default port number is 80 for HTTP and 443 for HTTPS.

URLs must also meet other requirements that treat some reserved characters as
special and allow only unreserved characters such as letters and numeric digits as
well as the hyphen -, underscore _, period . and tilde ~ characters to be used.

To represent all other characters, we must use percent-encoding by replacing the
character with a percent sign % followed by the character’s ASCII code converted to
a 2-digit hexadecimal number. Some percent-encodings of common characters are
provided as examples in the following table:

Character (space) # % / : ?
ASCII Code 32 35 37 47 58 63

Percent-Encoding %20 %23 %25 %2F %3A %3F

1 Identify the scheme, host, port number and path components for each of the
following URLs. If the port number component is missing, use an appropriate
default value instead. If the path component is empty, use “(empty)” instead.

Example

http://www.example.com:8080

Scheme Host Port No. Path

CPDD Computer Education Unit Version: Dec 2018
3

Web Applications

http www.example.com 8080 (empty)

a) http://www.example.com

Scheme Host Port No. Path

b) https://secure.example.com:4430/

Scheme Host Port No. Path

c) https://example.com:80/example.com

Scheme Host Port No.

Path

d) https://example.org/example.com/example.html

Scheme Host Port No.

Path

e) http://complex.example.org/complex.example.com

Scheme Host Port No.

Path

f) https://www.moe.gov.sg/news/press-releases

Scheme Host Port No.

Path

CPDD Computer Education Unit Version: Dec 2018
4

Web Applications

In addition to the scheme, host, port number and path components, a URL can also
have two optional components.

After the path, there may be a question mark ? followed by a query which provides
additional information to the web server and may modify the server’s response.

After the query (or path, if there is no query), the URL may also end with a hash
character # followed by a fragment. Note that unlike queries, fragments are NOT
sent to the web server and are only meant to control how a web browser displays the
response. Changing the fragment component of a URL when making a HTTP
request generally does not change the server’s response.

The different parts of a URL are summarised below:

2 Identify the scheme, host, port number, path, query and fragment components
for each of the following URLs. If the port number component is missing, use
an appropriate default value instead. If any of the path, query or fragment
components are empty, use “(empty)” instead.

a) http://example.net:5000/com?hello=world

Scheme Host Port No. Path

Query Fragment

b) https://sub.domain.example.org/9999/#hello-world

Scheme Host Port No. Path

Query Fragment

c) https://example.org/res/search?keyword=computing#page-1

CPDD Computer Education Unit Version: Dec 2018
5

Web Applications
Scheme Host Port No. Path

Query Fragment

The URL for a web document is usually entered into the address bar of a web
browser. For convenience, web browsers will usually let users omit the first portion of
the URL before the host as it is assumed that most users intend to use HTTP. (For
example, you can enter example.com as a shortcut for http://example.com.)

After a URL is entered, the web browser creates a socket and connects it to the
specified host and port number (80 by default). After a connection is established, the
web browser sends a request for the document using the path given by the URL.
This is a HTTP request. If all goes well, the web server then responds with the
requested document. This is a HTTP response. These requests and responses are
encoded as bytes using rules defined by the HTTP protocol.

3 In HTTP, what is the difference between a “request” and a “response”?

A A HTTP request comes after a HTTP response.

B A HTTP request is sent from the client to the server while a HTTP
response is sent from the server to the client.

C A HTTP request is sent from the server to the client while a HTTP
response is sent from the client to the server.

D A HTTP request must be shorter than a HTTP response.

()

HTTP Requests

Some web browsers like Google Chrome and Microsoft Edge come with built-in
“Developer Tools” that are useful for learning about HTTP. The instructions in the
following tasks are customised for Google Chrome.

Launch Google Chrome and open Developer Tools from the ellipsis menu under the
“More tools” item.

CPDD Computer Education Unit Version: Dec 2018
6

Web Applications

With the Developer Tools open, select the “Network” tab. Next, enter
http://example.com into the address bar and press enter. After the page has
loaded, the Network tab should list out all the HTTP requests made by the web
browser. Select a request and you should be able to read more details about that
request in a separate pane.

Scroll down in the details pane and you should see a section labelled “Request
Headers” with a link labelled “view source” next to it. (If the “view source” link is
missing, make sure you are using HTTP and not HTTPS. You may also need to
refresh the page.) Click on the link and you will see a portion of the bytes that were
sent by your web browser to the web server using a socket.

CPDD Computer Education Unit Version: Dec 2018
7

Web Applications

Unlike more complex protocols, HTTP 1.0 and 1.1 are text-based, so HTTP requests
and responses are still readable even when they are encoded as bytes. Each
request starts with a request line, followed by header fields, followed by an empty
line and an optional message body.

Request Line

The request line contains three important pieces of information separated by spaces:
the HTTP command (also called method or verb) that the client wants to perform,
the path of the relevant document (together with the query portion of the URL, if any)
and the version of HTTP used by the client.

The two most common HTTP methods are GET and POST. GET is used whenever we
simply want to get or request for a web document without the intention to make any
changes. For instance, when we enter http://example.com/test.html into a web

CPDD Computer Education Unit Version: Dec 2018
8

Web Applications
browser’s address bar, the web browser actually creates a socket to the
example.com server and sends a request with the following request line:

GET /test.html HTTP/1.1

Notice that the path that is used in the request line comes directly from the URL that
was entered in the address bar. An exception is if the URL’s path is empty, such as
for the URL http://example.com (without a slash). In this case, a path of / is used
instead so http://example.com (without a slash) and http://example.com/ (with
a slash) result in the same HTTP request.

If the URL has a query component, it is included in the request line together with the
question mark separator. For instance, when http://example.com/hello?q=world
is entered into a web browser’s address bar, the following request line is used:

GET /hello?q=world HTTP/1.1

On the other hand, POST is used when we intend to post or submit data and make
changes to data on the web server. In this case, the request will usually include a
message body containing the data that is being submitted. We will see examples of
what a POST request looks like later in this practical task.

Header Fields

HTTP header fields provide additional information to the web server so it can
customise its response accordingly. Each header field has its own line that consists
of a name, followed by a colon, followed by a space and then the header field’s
value.

The only header field that is required by HTTP 1.1 is named Host and is copied
directly from the host portion of the URL. This allows the same web server to provide
different responses depending on which domain name is used to reach the server.
For example, if http://example.com/test.html is entered into a web browser’s
address bar, the HTTP request will use the following header field:

CPDD Computer Education Unit Version: Dec 2018
9

Web Applications

Host: example.com

Some other important HTTP header fields are Content-Type (to specify how the
message body should be interpreted) and Content-Length (to specify the message
body’s size in bytes). For a list of possible header fields and what they are used for,
you may refer to https://en.wikipedia.org/wiki/List_of_HTTP_header_fields.

Message Body

After the header fields, a HTTP request is required to have an empty line followed by
an optional message body.

For GET requests, the message body is ignored so this portion of the request is
usually omitted. However, for POST requests, the message body typically contains
the data that is being submitted. For instance, the following is a simplified POST
request that a browser may make after a simple web form is submitted by the user:

POST /send HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 30

user=tim&msg=Hello%2C+World%21

You will learn what the above message body means and how it is related to the form
shown in the next practical task.

4 Enter the following program:

import socket

my_socket = socket.socket()
my_socket.bind(('127.0.0.1', 8000))
my_socket.listen()
new_socket, address = my_socket.accept()
received_data = new_socket.recv(1024)
print(received_data.decode())
new_socket.close()
my_socket.close()

This server program simply listens for a connection request on port number
80, creates a connection to the client when a request is detected, and then

CPDD Computer Education Unit Version: Dec 2018
10

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Web Applications
prints out up to 1024 bytes of the request received from the client on the
Python shell window. (Note that this server does NOT send any bytes back to
the client – the browser.)

a) Restart the server and visit http://127.0.0.1:8000/ using a browser.
Copy the first line of what the browser sends to the server after
connecting.

b) Restart the server and visit http://127.0.0.1:8000/example using a
browser. Copy the first line of what the browser sends to the server after
connecting.

c) Restart the server and visit http://127.0.0.1:8000/example?q=query
using a browser. Copy the first line of what the browser sends to the server
after connecting.

d) Restart the server and visit http://127.0.0.1:8000/example#fragment
using a browser. Copy the first line of what the browser sends to the server
after connecting.

5 The previous server program does not send any bytes back to the client
before closing the socket. Which of the following most accurately describes
what is displayed on the browser?

A The browser displays a blank page.

B The browser displays a loading animation.

C The browser displays a sequence of random bytes.

D The browser displays an error page.
()

CPDD Computer Education Unit Version: Dec 2018
11

Web Applications

6 What three pieces of information must the first line of a HTTP request
contain?

a)

b)

c)

7 When a URL is entered into the address bar of a web browser, a HTTP
request is constructed and sent to the host that is specified in the URL.
Predict the request line and host header field portions of the HTTP request for
each of the following URLs. An example has been completed for you.

Example

http://www.example.com/home?hello#world

GET /home?hello HTTP/1.1
Host: www.example.com

a) http://example.net:5000/com?hello=world

b) http://sub.example.org/9999?keyword=computing#page-1

c) http://www.moe.gov.sg#footer

CPDD Computer Education Unit Version: Dec 2018
12

Web Applications

HTTP Responses

After a web server receives a HTTP request, it sends back a HTTP response using
the same socket. Open Google Chrome's Developer Tools, select the "Network" tab
and visit http://example.com again. Above the section labelled “Request Headers”
should be another section labelled “Response Headers”. Look for a “view source”
link next to this label and click on it. (Once again, if the “view source” link is missing,
make sure you are using HTTP and not HTTPS.)

HTTP responses have a similar format to HTTP requests. Each response starts with
a status line, followed by header fields, followed by an empty line and an optional
message body.

Status Line

The status line summarises if the web server was able to perform the request that
was received from the client or web browser. It contains three important pieces of
information separated by spaces: the version of HTTP that the server uses, a status
code and an reason phrase. Each status code has a recommended corresponding
reason phrase that helps to explain what the status code means. Three common
status codes and their corresponding reason phrases are:

Status Code 200 404 500

CPDD Computer Education Unit Version: Dec 2018
13

Web Applications
Reason Phrase OK Not Found Internal Server Error

Header Fields

Like HTTP requests, HTTP responses also have header fields that provide additional
information. Each header field has its own line that consists of a name, followed by a
colon, followed by a space and then the header field’s value.

A typical HTTP response would have a Content-Type value to specify how the
message body should be interpreted as well as a Content-Length value to specify
the message body’s size in bytes. Some typical values for Content-Type value are
text/plain, text/html, text/css, image/png, image/gif and image/jpg.

Message Body

Like HTTP requests, the header fields and message body for a HTTP request are
separated by an empty line.

The message body will typically contain a document in the format specified by the
Content-Type header field. For instance, the following is a simplified HTTP
response that a browser may make after receiving a request for a HTML document:

HTTP/1.1 200 OK
Host: example.com
Content-Type: text/html
Content-Length: 110

<!DOCTYPE html>
<html lang="en">
<head><title>Hello, World!</title></head>
<body>Hello, World!</body>
</html>

The message body in the above response is an example of a HTML document. You
will learn more about HTML in the next practical task.

CPDD Computer Education Unit Version: Dec 2018
14

Web Applications

8 Enter the following program:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

import socket

response = b'HTTP/1.1 200 OK\r\n'
response += b'Content-Type: text/plain\r\n'
response += b'Content-Length: 13\r\n'
response += b'\r\n'
response += b'Hello,\nWorld!'

my_socket = socket.socket()
my_socket.bind(('127.0.0.1', 8000))
my_socket.listen()
new_socket, address = my_socket.accept()
new_socket.sendall(response)
input('Press enter to quit: ')
new_socket.close()
my_socket.close()

Unlike the previous server program that did not send anything back to the
browser, this server sends back a hard-coded HTTP response.

Notice from lines 3 to 7 that HTTP uses '\r\n' for line endings instead of
'\n' such that every line that comes before the message body (including the
empty line) ends with '\r\n' instead of '\n'. '\r' is called the carriage
return character and '\n' is called the line feed character. Historically, when
computers used printers for output, both characters were needed to position
the print head correctly for the next line. Some systems such as HTTP still
require use of these two characters to denote the end of a line.

However, note that the requirement to use \r\n only applies to the headers
and does not affect the message body. HTTP transmits the message body
without trying to interpret it, so it can use '\n' for line endings if desired.

Use a browser to visit http://127.0.0.1:8000 and copy what is displayed
on the browser.

9 What three pieces of information must the first line of a HTTP response
contain?

CPDD Computer Education Unit Version: Dec 2018
15

Web Applications
a)

b)

c)

CPDD Computer Education Unit Version: Dec 2018
16

