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Answer all questions [100 marks]. 

1 
The graph of 

2

1
y

x



 for 0x  , is shown in the diagram below. Region R is 

bounded by the x-axis, the y-axis, the line 1x   and the curve 
2

1
y

x



. The 

area of region R may be approximated by the total area, A, of n rectangles, each 

of width 
1

n
, as shown in the diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
(i) Show that 

1

0

2n

r

A
n r








 . [2] 

 

 
(ii) By considering the exact area of region R, show that 

1

0

1
ln 2

n

r n r








 . [2] 

 

   

 Solution  

 (i) Total area of all the n rectangles, 

      
11 2

1 2 2 2 2

1 0 1 1 1 n
n n n

A
n 

 
     

      

           
1 2 2 2 2

0 1 1 2 1

n n n

n n n n n

 
     

       

  

 

                 
2 2 2 2

0 1 2 1n n n n n
    

    
 

 

 

                

1

0

2
( )

n

r

shown
n r








  
 

 (ii)
  1 1

0 0

2
  d 2ln 1 2ln 2
1

x x
x

       
 

 Area of the n rectangles > Area of region R  

 

3
       

n

 2

n

 1 1n

n



 

2n

n



 

3n

n

  
x  

y  

2

1
y
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1

0

2
2ln 2

n

r n r








  

 
   

1

0

1
ln 2

n

r n r








  (Shown) 

  

   

2 A sequence of real numbers x1, x2, x3, … satisfies the recurrence relation 

1

2

3
n n

n
x x


 . Given that 

1

2

3
x  , write down 2 3 4, ,x x x  in the form of 

 !
n

n a

b


, 

where a and b are positive integers. [2] 

 Hence make a conjecture for xn and prove the conjecture by Mathematical 

Induction. [4] 

   

 Solution  

 
1

2

3
x  , 

2 1

1 2 2

3 3
x x


   

3 2

2 2 8

3 9
x x


   

4 3

3 2 40

3 27
x x


   

 

  
1 1 1

1 1 !2 1.2 2!

3 3 3 3
x


     

 
2 2 2 2

2 1 !2 1.2.3 3!

3 3 3 3
x


     

 
3 3 3 3

3 1 !8 1.2.3.4 4!

9 3 3 3
x


     

 
4 4 4 4

4 1 !40 1.2.3.4.5 5!

27 3 3 3
x


   

  

  1 !
Conjecture:  

3
n n

n
x


   

 

 
Let nP  be the statement 

 1 !

3
n n

n
x


  for all n  . 

 1

2
1,LHS given

3
n x    

 
1

1 1 ! 2
RHS LHS

3 3


    

1P  is true.  

 
Assume kP  is true for some k   i.e.

 1 !

3
k k

k
x
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To show 1kP   is true i.e. 

 
1 1

2 !

3
k k

k
x  


  

1

2
LHS

3
k k

k
x x


   

 1 !2

3 3k

kk  
  

 
 

 

  
1

2 !
RHS

3k

k



   

1kP   is true if kP  is true. 

Since 1P  is true and 1kP   is true if kP  is true, nP  is true for all n  .  

   

3 A geometric series, G, has common ratio r, 1r  , and an arithmetic series, A, has 

a non-zero first term a. The first three terms of G are equal to the seventh, third 

and first term of A respectively.  

 (i) Show that 22 3 1 0r r   .  [3] 

 (ii) Deduce that G is convergent. [1] 

 (iii) Find the sum to infinity of the even-numbered terms of G in terms of a. [3] 

   

 Solution  

 (i) Let b be the first term of the G and d and b be the common difference of the 

AP.  

 

 2

6

2

1

b a d

br a d

br a

 

 



 

 

  2 2 2br br d    

  4 3b br d    

  

  2

3
 gives, 2

2

b br

br br





 

 

  21 2r r r     

 22 3 1 0r r     

 (ii)   2 1 1 0r r     

 1
 or  1 (rejected 1)

2
r r    

 

 
Since 

1
1, is convergent.

2
r G    

 

 (iii) From (1) , 4b a   

 

Sum to infinity of the even-numbered terms 
22

1
4

2

1 1
1

2

a
br

r
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 8

3

a
  

 

   

4 Given that ln 1y x  , show that 

    

22

2

d 2 d d
2ln

d dd

y y y
y

y x xx

 
   

 
.    

[2] 

 (i) By further differentiation of this result, or otherwise, find the Maclaurin’s 

series of y up to and including the term in 
3x .  [3] 

 

(ii) Deduce the series expansion of 
1e

1

x

y
x




  up to and including the term in 

2x . [2] 

   

 Solution  

 ln 1y x   

1
2

1 d 1
(1 ) ( 1)

d 2

y
x

y x


       

1 d 1 1

d 2 1

y

y x x
 


 

d
2ln

d

y
y y

x
   

2

2

d d 1 d d
2ln 2

d d dd

y y y y
y

x y x xx

    
      

    
    

22

2

d 2 d d
2ln

d dd

y y y
y

y x xx

 
   

 
 

 

 

(i) 
3 2

3 2

d d 1 d
2ln 2

dd d

y y y
y

y xx x

  
   

  
  

22 2

2 2 2

4 d d d 1 d d
2

d d dd d

y y y y y

y x x xx y x

      
                 

  

When 0x , 
  ey  

d e

d 2

y

x
        

2

2

d
0

d

y

x
       

3

3

d e

8d

y

x
        

Maclaurin’s series of y is 
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2 3e e

e ( ) (0)
2 2! 8 3!

x x
y x

   
         

   
 

 3e e
e

2 48
y x x         

 (ii)  

ln 1y x 
   

 1 x
y e




  

 1
2

2 1

d e e

d 2 16

x

x

y e
x

x




     

 
 

 1
2

1

e e
e +

8

x

x
x




  

 
 

   

5 Paul, a life guard standing at point A along a straight stretch of the beach, looks 

through his binoculars and sees a boy clinging on to his overturned canoe and 

struggling to keep afloat at point B in the sea. P is the point on the straight stretch 

of the beach nearest to B such that  BP = 1 km  and PA = 2 km. To reach the boy, 

Paul first runs to Q and then swims in a straight line to B. 

 

 

 

 

 

 

 

 

 

 

When Paul runs, he covers 1 km in 4 minutes. When he swims, he covers 1 km in  

10 minutes.  

 (i)   If PQ = x km, 0 2x  , show that the time T minutes taken by Paul to reach 

B is given by 28 4 10 1T x x    .  [1] 

 (ii)  Find the exact value of x such that he would take the shortest time to reach 

the boy. [4] 

 (iii) Hence, find the shortest time he would take to reach the boy, leaving your  

       answers in exact form. [2] 

   

 Solution  

 (i)  Total time, T = run swimT T  

  = 24 (2 ) 10 1x x     28 4 10 1x x      

 
 
(ii)

 
   

1
 

2 2
d 1

4 10 1 2
d 2

T
x x

x

 
    

 
  

 

B 

x km 

1 km 

2 km P A 

Q 
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        2

10
4

1

x

x
  


 

  For shortest time,  

d
0

d

T

x


2

10
4

1

x

x
 

  

  

 22 1 5x x  
    

224 1 5x x  
 

221 4x 
 

               

2 4

21
x   

 

 2
since 0

21
x x    

 

 Method 1 
 

x 2

21



 
 
 

 

2

21  
2

21



 
 
 

 

d

d

T

x  
− 0 + 

sketch  

 

 

  

 

 

 Method 2 

2

2 2

2 2

2
10 1 10

d 2 1

d 1

x
x x

T x

x x

 
   

 
  

         

 

 

2 2

3
2 2

3
2 2

10(1 ) 10

1

10
0 is a minimum

1

x x

x

T

x

 




  


 

  

 
Hence, when x = 

2

21
 , Paul would take the shortest time. 

 

 
(iii)When  x = 

2

21
, 

2 4
8 4 10 1

2121
T

 
    

 
 

 

                           8 2 21    minutes 

Shortest time taken by Paul 8 2 21 minutes  
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6 A water tank has a horizontal base with a fixed cross sectional area A m
2
. Water 

is flowing into the tank at a constant rate, and flows out at a rate which is 

proportional to the depth of water in the tank. At time t seconds the depth of the 

water in the tank is x metres. If the depth is 1 m, it remains at this constant value. 

Show that  

 

 
 

d
1 ,

d

x
k x

t
 

 [3] 

 where k is a constant.   

 Initially, the depth of the water is 2 m and is decreasing at a rate of 0.01ms
-1

.   

 Find the exact time taken at which the depth of the water is 1.5m. [4] 

   

 Solution  

 
outin

ddd

d d d

VVV

t t t
   

 

 d

d

x
A a bx

t
   

 

 d

d

x a bx

t A


  

 

 
When 

d
0

d

x

t
 , x =1. 

 

 a b   

 
   

d
1 ,     1

d

x a ax a
k x k

t A A


      

 

 

 
1

d  d
1

x k t
x


   

 

 ln 1 x kt c      

 When t = 0, x = 2  

 So c = 0  

 
When x = 2, 

d 1

d 100

x

t
   

 

 
So from (1), k =

1

100
 

 

 
ln 1  

100

t
x    

 

 When x = 1.5,  

 100ln2 st    

   

7 Draw on an Argand diagram, the loci  with equations, 

    
2 3z i   and 4 4 .z z i  

 

 

[3] 

 (i) Given that the complex number 1z is in the first quadrant and lies on both 

the loci. Find 
1z i . 

[1] 

 (ii) The complex number w lies in the common region determined by the 

inequalities, 2 3z i   and 4 4 .z z i    

 

        In your diagram , shade the region which represents the possible values of w.
 

[1] 
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 (iii) Hence find the range of values of  arg (w − 7− i) in exact form.
 

[3] 

   

 Solution  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (i) 5 units                                 

 (iii)  From the diagram, CD = 5 and CG = 3                  

 arg (w−7−i) = π    or  − π < arg (w−7−i) ≤  sin
-1

(3/5) − π          

   

8 
(i) Verify that      

2 1
ln ln 1 ln 2 ln 1  for 2.

2

r
r r r r

r

 
       

 
 

[1] 

 (ii) Prove by the method of differences that 

    
2

2

1
ln ln 3 ln 2 ln 1 !

2

n

r

r
n n

r

  
      

  
  . 

[3] 

 
(iii) Hence, find 

2

1

2
ln

3

n

r

r r

r

  
  

  
 . 

[2] 

 

(iv) Deduce that 
 

  
2

2

1
ln ln 1 ! ln 3

2

n

r

r
n

r

  
     

    
  

[2] 

   

 Solution  

 
 

  
     

2 1 11
i ln ln ln 1 ln 2 ln 1

2 2

r rr
r r r

r r
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2

2 2

1
ii ln ln 1 ln 2 ln 1

2

ln 3 ln 4 ln1

ln 4 ln 5 ln 2

...

ln ln 1 ln 2

ln 1 ln 2 ln 1

n n

r r

r
r r r

r

n n n

n n n

 

  
            

  
 

   
 
 
     
 
       

 

 

 

      ln3 ln 2 ln1 ln2 ... ln 2 ln 1n n n           
 

        ln3 ln 2 ln 1 2 ... 1n n      
 

     ln3 ln 2 ln 1 ! ,  shownn n    

 

 

 
(iii) 

 
22

1 1

1 12
ln ln

3 3

n n

r r

rr r

r r 

      
              

 
 

Replace r  by r −1

 

  
 

2
1

1 1

1 1 1
ln

1 3

r n

r

r

r

 

 

    
  
   

  

  

21

2

1
ln

2

r n

r

r

r

 



  
   

  
  

 

 

    
 

 

    
 

   

2
1 1

ln 3 ln 2 ln 1 ! ln
1 2

2
ln 3 ln 2 ln 1 ! ln

3

ln 3 ln 3 ln !

n
n n

n

n n
n n

n

n n

  
       

  
 

 
       

 

   

 

 

 

 
    

2
1 1 1

iv   for 2
2 2

r r r
r

r r

  
 

 
 

 
2 21 1

ln ln
2 2

r r

r r

   
       

 

 
2 2

2 2

1 1
ln ln

2 2

n n

r r

r r

r r 
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2 2

2 2

1 1
ln ln 1 ! ln ln 1 !

2 2

n n

r r

r r
n n

r r 

   
           

   

 
          

2

2

1
ln ln 1 ! ln3 ln 2 ln 1 ! ln 1 !

2

n

r

r
n n n n

r

 
         

 
 

  

 
    

2

2

1
ln ln 1 ! ln3 ln 2

2

n

r

r
n n

r

 
     

 
 


 

 

 Since  1 2 ln 2 0n n      

 
  

2

2

1
ln ln 1 ! ln3,  deduced.

2

n

r

r
n

r

 
    

 
 

  

 

   

9 The hyperbola C has equation given by 
2 22( ) ( ) 18x h b y k    , where b and h 

are positive real numbers and 0 2k  .  An asymptote of C is given as 

2
( ) .y x h k

b
    

 

 

 

 

 

 (i)   Write down the equation of the other asymptote in terms of b, h and k. [1] 

 It is given that b = 9 and h = 3.  

 (ii)  Sketch the graph of C, clearly indicating the asymptotes and the coordinates 

of the centre of the hyperbola. [3] 

 (iii) Find the range of values of m such that the line  2y mx k    intersects 

the curve C at exactly two points. [1] 

 (iv) By drawing an additional graph on the diagram drawn in (ii), state the 

number of real roots of the equation
29( ) 18y k y k    .                                              [3] 

   

 Solution  

 
 

2 2( ) ( )
i  1

9 18 /

x h y k

b

 
   

The asymptotes are  
2

( )y k x h
b

   
 

Therefore the second asymptote is 

 

2
( )y x h k

b
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 (ii)  

 
2 2( 3) ( )

1 1
9 2

x y k 
   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (iii)  

    
  

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            (iv)  
2

2

2

9( ) 18

( ) 18

2 18

( )
1 (2)

18 2

y k y k

y k y k

y k y k

   

  


 
 

 
Comparing (1) and (2), 

We let 
 

2
3

18 9

xy k 
  

 
2

2 3y x k     is the additional curve to draw  

2 2
,

3 3
m m  

(3,-k) 

 

2
( 3)

3
y x k   

 

2
( 3)

3
y x k  

 

Shape------1 

Asymptotes:   1 

Centre…… 1 

 

(3,−k) 
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10 (a) The graphs of f ( )y x  and f ( )y x   are given below. 

         

   

(3,−k) 

2
( 3)

3
y x k   

 

2
( 3)

3
y x k  
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 Sketch separately the graph of  

 (i) f ( )y x   [3] 

 
(ii) 

1

f ( )
y

x
   

[3] 

 stating clearly any asymptotes, turning points and axial intercepts.  

 (b) A graph with equation f ( )y x  undergoes in succession, the following 

transformations: 

A: Scaling parallel to the y-axis by a factor of 
1

e
 

B: Translation of 1 unit in the direction of the negative x-axis 

C: Scaling parallel to the x-axis by a factor of 
1

2
 

The equation of the resulting curve is given by 2( 1)e xy   . Find the equation 

f ( )y x .   [3] 

   

 Solution  

 (a) (i)     
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 (ii)      

 
 

  

 
(b)           C’: 

1
2

2( 1)
e

x
y

 
  

2e x    

                 B’: ( 1) 2e xy     
1e x      

                A’: 1e(e )xy    e x     
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11 The functions f and g are defined by  

  
2

1 ,    0 10,
f :

2,      10 0,

x x
x

x x

   

    

 

g : 1,    10 10.x x x      

 (i)  Sketch the graph of f, indicating all axial intercepts. Hence explain why 1f 

does not exist. [3] 

 (ii)  Find the largest domain of f such that 1f  exists. [1] 

 (iii) With the domain found in (ii), explain how many real roots there will be for 

the equation    1f fx x  . 
[1] 

 (iv) Explain why fg exists. Hence find fg in similar form and its exact range. [4] 

   

 Solution  

 (i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Since the line y = 0.5 cuts the curve thrice, f is not a one-one function and so f
-1

 

does not exist.  

 (ii)     10,0 1 2 2,10   or  10,0 1 2 2,10       
  

 
 

 (iii) Solving    1f fx x   is the same as solving  f x x and so finding the 

number of intersection points between the graph of f and the line  y = x in the 

domain in (ii) give rise to the number of real solution. So from the graph above, 

there will be 2 distinct real roots.  

 
(iv) 

 

 

g

f

R 1,9

D 10.10   

 

 
 

 

 Since 
g fR D so fg(x) exist.  

x 

y 

1 

−2 

−2 1 

y = f(x) 

10 −10 

8 

81 
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2

2 ,    10, 1 1,10
fg :

1,      1 1

x x
x

x x

     


    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

        g f
10,10 1,9 2, 1 0,64      

 

   fgR 2, 1 0,64      

   

   

12 
(a) Find the integral 

2 (ln ) d .
2

x
x  

[3] 

 (b)  Solve the inequality 

                             
x

a
x

4
3  , 

       leaving your answers in terms of a, where 1 3a   . 

      Hence find  
43

3

1

  d ,
a

x x
x

  in terms of a. 

 

 

 

 

 

 

[6] 

   

 Solution  

 (a)  

2 2

2

2 1
(ln ) d [ (ln ) ] [2(ln )( )( ) ]d

2 2 2 2

[ (ln ) ] 2 (ln )d
2 2

x x x
x x x x

x

x x
x x

 

 

 



 

 

 2 2 1
[ (ln ) ] 2[ (ln ) ( )( ) d ]

2 2 2

x x
x x x x

x
     

 

 2(ln ) 2 (ln ) 2
2 2

x x
x x x c     

 

 
(b)         

x

a
x

4
3   

               

0
44




x

ax
                                                                 

 

y 

x 

−1 

−1 1 

1y x   

−10 10 
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0

2222




x

)ax)(ax(

 

    

 
0

22




x

)ax(ax)(ax

                              
                            

  

 
Since 022  ax  , 

 

   
0

x a x a

x

 
  

 0 xa   or x a                                 

 

  

 
For 1 x a  , 

4
3 0

a
x

x
         

 For 3a x  , 
4

3 0
a

x
x

   

43
3

1

  d
a

x x
x

                                                         

= 
4 43

3 3

1

( )d ( )d
a

a

a a
x x x x

x x
                                      

 

 4 4
4 4 3

1[ ln ] [ ln ]
4 4

a

a

x x
a x a x      

 

 4 4
4 4 4

4
4 4

2 4
4

1 81
[ ln ( )] [ ln 3 ( ln )]

4 4 4 4

41
2 ln ln 3

2 2

41
ln

3 2 2

a a
a a a a a

a
a a a

a a
a

       

   

 
   

 

 

 

   

13 Referred to the origin O, the position vectors of the points A and B are   

 4 4 2 i j k   and 2 2 i j k  respectively.  

 The plane 1  contains the points B and F, where F is the foot of perpendicular 

from A to the plane 1 .   

 (i) Given that AF : FB  = 2 : 1, find the exact area of triangle AA’B, where A’ is 

the image of A about 1 . [4] 

 (ii) Deduce the exact area of triangle OAA’. [2] 

 The equation of line  is      2 3 2 3 1 2 ,              r i j k .    

 (iii) Find the position vector of the point C on  such that OC is perpendicular to 

. [3] 

 

The plane 2  has equation 

1

1 0

0

.
 
 


 
 
 

r . 

 

‒ a 

− − + 

a 0 

+ 
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 (iv)  The 3 planes 1 , 2
 
and 3

 
intersect along the line . If 3  is the plane 

that has the greatest possible distance from the origin, find its equation. 

Explain your answers clearly. [2] 

   

 Solution  

 

(i) 

4

4

2

 
 

 
 
 
 

a

, 

2

2

1

 
 

  
 
 

b  

 

  

 

 

 

 

 

 

 

 

 

  

 2

2

1

BA


 
 

  
 
    

 Method 1  

 2

2

1

BA


 
 

  
 
   

So 

2

2 3

1

BA


 
 

   
 
 

 

Thus  
22 23 2x x    

 3

5
x   

 

 
Thus area of triangle 

1 3 6
' 2

2 5 5
BAA

  
     

  
 

 

 18

5
  

 

 Method 2  

 
Area of 

1
' 2

2
BAA BF AF

 
      

 

A 

B F 

A’ 

  

1  

A 

B F 

2x 

x 

A 
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'

sin cos

.BAA BA BA

BA BA 

  

 

  



1 1
n n

 

  

 2
1 2

5 5
BA
   

   
  

 
 

 2

2
2

2
5

1

 
 

  
 
 

 

 

 18

5
  

 

 (ii) Method 1  

 Since 'BAA  shared the same perpendicular 

height h as 'OAA with base BA and OA respectively, 

so area of 
18 36

' 2
5 5

OAA
 

   
 

 

 

 

 

 

  

 Method 2  

  

 

 

 

 

 

  

 

 

 

 

Since BAF is similar to 'OAA   

 
So   

2
Area of ' 4

Area of 2

OAA

BAF

  
  

  
 

 

 1
Area of ' 4 Area of '

2

36

5

OAA BAA   



 

 

A 

B F 

A’ O 

2 

2 

1 

5  

5  

A 

B F 

A’ O 

  

B F 

2 

1 

5  
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(iii) 
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 (iv) Since lies on 3 , B will then lie on 3 .  

 To have 3 to be furthest away from the origin, c must be perpendicular to the 

plane because rotating 3 about will cause the distance from O to 3 to be 

shorter than the distance from O to the line  if c is not perpendicular to the 

plane. 
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END OF PAPER 
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Cross sectional view of the plane and the line 
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