

FAIRFIELD METHODIST SCHOOL (SECONDARY)

PRELIMINARY EXAMINATION 2022 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

MATHEMATICS

4048/01

Paper 1

Date: 23 August 2022

Duration: 2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in

terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use

Table of Penalties		Question Number		
Presentation	€1 €2		Parent's /	
Rounding off	€1		Guardian's Signature	80

Name:	(
	`

Class:

Setters: Mr Alester Tan

This question paper consists of <u>20</u> printed pages.

)

Mathematical Formulae

_ (

Compound interest

$$Total amount = P \left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone =
$$\pi r t$$

Surface area of a sphere = $4\pi r^2$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of a triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

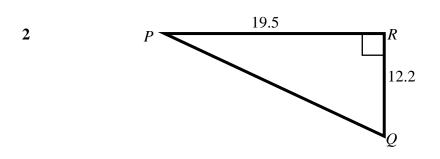
Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$


Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Name: () Class:
---------	----------

Answer **all** the questions.

1 Vivien invested \$2500 in a bank at a simple interest rate of 3% per annum. The total value of the investment in the bank after a few years is \$2912.50. Calculate the number of years in which she has invested in the bank.

Answeryears [2]

In the triangle, PR = 19.5 cm, RQ = 12.2 cm and angle $PRQ = 90^{\circ}$. Calculate PQ.

Answer PQ =cm [2]

A train travels 120 km in 1 hour 45 minutes. During the first 30 minutes, the train travels at an average speed of 96 km/h.
 Calculate the average speed of the train during the last 1 hour 15 minutes.

Answer km/h [2]

Name:	 ()	Class:	

- 4 A bag contains balls of equal sizes of which 12 are blue, 6 are yellow and the rest are white. The probability of drawing a blue ball from the box is $\frac{3}{7}$.
 - (a) Find the total number of white balls in the bag.

Answer white balls [1]

(b) Find the number of yellow balls that should be added to the bag so that the probability of drawing a yellow ball is $\frac{7}{18}$.

Answer yellow balls [1]

Name:	()	Class:	
		,		

5 Write as a single fraction in its simplest form $\frac{5x}{3} - \frac{3(x+4)}{2}$.

6 (a) Five positive consecutive integers have a mean of 19. The largest integer is *x*. Find the value of *x*.

(b) A set of data is listed as p, p^2, p^3, p^4 and p^5 where p is an integer, p < 0 and $p \neq -1$.

Trevor says that p^3 is not the median.

Explain, with mathematical reasoning, why he is correct.

Answer

Name:	
iname.	

7 The dimension of a wooden cuboid is 3 cm by 2 cm by 2 cm. It takes 6174 of such wooden cuboids to form a cube.Find the length of the cube.

_ (

Answer cm [2]

8 Travis wanted to buy a particular pair of sneakers in 2020 but he waited until 2021 when its price was reduced by 13.2%. In 2020, the cost of the pair of sneakers was \$510. Calculate the cost of the sneakers in 2021.

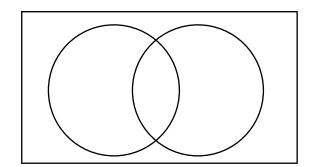
Answer \$.....[2]

Name: _____ (

) Class: _____

9 (a) Solve
$$\frac{6}{5} \div \frac{15x}{2} = 3$$

(b) Simplify 3p - 4(6p - 8q).

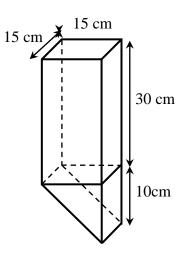

10 The table below shows the favourite drinks of a group of students.A pie chart is to be drawn to show this information.Calculate the angle of each sector of the pie chart.Write your answers in the table.

Favourite drink	Number of students	Sector angle
Fruit juice		
Soft drink		
Coffee		
represents 6 st		

11 An interior angle of a regular hexagon is 5 times the size of the exterior angle of another *n*-sided regular polygon. Find the value of *n*.

12 (a) On the Venn Diagram shown in the answer space, shade the set $A \cup B'$.

[1]

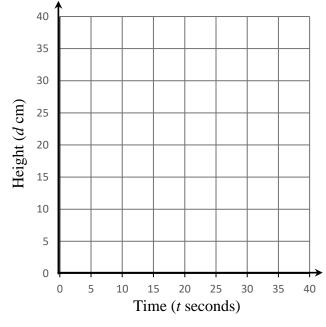

- (b) $\xi = \{x: x \text{ is an integer and } x \ge 1\}$ $P = \{x: x \text{ is a prime number}\}$ $Q = \{x: x \text{ is a perfect square}\}$ $R = \{x: x \text{ is an integer ending in 2}\}$
 - (i) Find $n(P \cap R)$.

(ii) Find $P \cap Q$.

)	Class:	
---	--------	--

13 The figure shows a container with a height of 40 cm and a width of 15 cm. The other dimensions are as shown. The container was initially empty and it takes 35 seconds to fill the container at a constant rate.

_____(

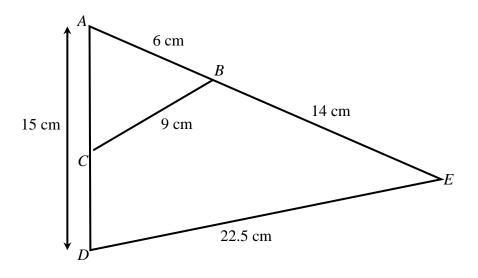


Name: __

(a) Find the time taken for the water level to reach 10 cm.

Answers [1]

(b) On the grid below, sketch the graph of the height of the water level (d cm) against time (*t* seconds) for the container.



Name:	()	Class:	
-------	---	---	--------	--

14 Tristan deposited a sum of money. At the end of 2.5 years, the amount of money has grown to \$5308.23 at 2.4% per annum compound interest compounded every 3 months. Calculate the sum of money deposited by Tristan at the beginning. Give your answer correct to the nearest dollar.

Answer \$..... [2]

15 In the diagram below, *B* is on *AE* such that AB = 6 cm and BE = 14 cm. AD = 15 cm and *C* is on *AD* such that BC = 9 cm, DE = 22.5 cm and $\angle ABC = \angle ADE$.

(a) Prove that $\triangle ACB$ is similar to $\triangle AED$. Answer

) Class: _____

15 (b) Show that CD = 7 cm. *Answer*

[2]

16 (a) Simplify $x^2 - (x+y)(x-y)$.

(b) Hence, write down the value of $1288073407^2 - 1288073405 \times 1288073409$.

_____(

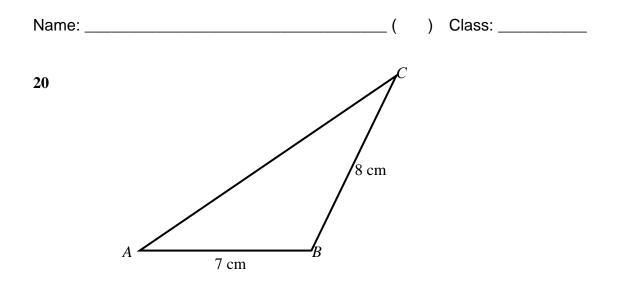
17 Given that p is inversely proportional to the square of q, calculate the percentage change in p when q is increased to 500%.

Answer% [2]

18 Simplify
$$\left(\frac{36a^2}{b^4}\right)^{-\frac{3}{2}}$$
.

19 (a) Usain Bolt once reached a top speed of 44.72 km/h in a race.Write this speed in metres per second.

Answerm/s [1]


(b) The heights of two geometrically similar cones are in the ratio of 1 : 25.

(i) Given that the circumference of the base of the larger cone is 300 cm, find the circumference of the base of the smaller cone.

Answercm [1]

(ii) Given that the mass of the larger cone is 7200 g, find the mass of the smaller cone.

Answerg [2]

In the diagram, AB = 7 cm and BC = 8 cm. The area of triangle ABC is 24.249 cm². Given that $\angle ABC$ is an obtuse angle, find the length of AC.

Answercm [5]

Name:	(()	Class:	
	·	. ,		

 (a) The three bells in a school ring at regular intervals. The first bell rings every 15 minutes. The second bell rings every 24 minutes. The third bell rings every 10 minutes. The three bells ring together at 07 00. Find the next time the three bells ring together again.

(b) x is a number between 20 and 30.The highest common factor of x and 540 is 12.Find the smallest possible value of x.

Name: ()	Class:	
---------	---	--------	--

22 (a) Factorise completely $3a^2 + 4b - 6a - 2ab$.

Answer[2]

(b) Using factorisation, solve $12x^2 - 25x + 12 = 0$.

Name:	()	Cl

(i)

23 The following table shows the amount of flour, butter and sugar needed in making a sponge cake and a butter cake.

	Flour	Butter	Sugar
Sponge Cake	250 g	250 g	100 g
Butter Cake	400 g	200 g	90 g

(a) The amount of ingredients used in making a sponge cake and a butter cake can be represented by the matrix

$$\mathbf{A} = \begin{pmatrix} 250 & 250 & 100 \\ 400 & 200 & 90 \end{pmatrix}$$
$$\mathbf{B} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}.$$
Evaluate **AB** where

Answer **AB** =.....[2]

(ii)	Explain what the elements in AB represent.
	Answer

Name: _	 	 _ ()	Class:	

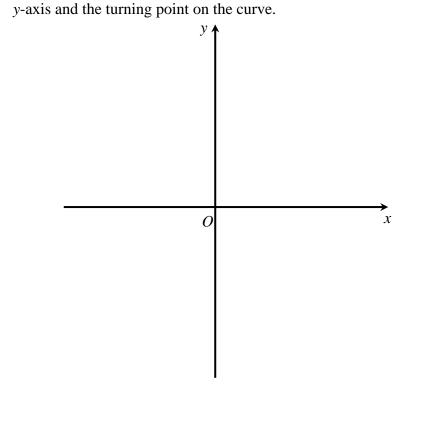
```
......[1]
```

.....

- 23 (b) The cost of 100 g of flour is 20 cents, 100 g of butter is 48 cents and 100 g of sugar is 15 cents.
 - (i) Represent this information in a 3×1 column matrix **D**.

Answer **D** =.....[1]

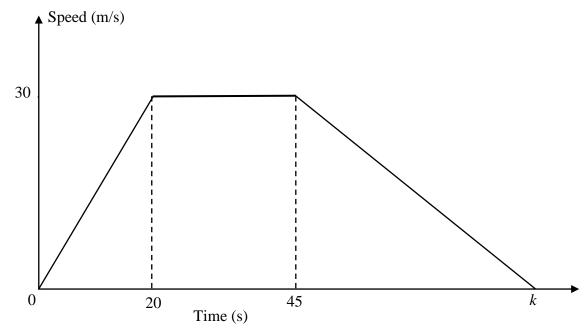
(ii) The elements of the matrix \mathbf{F} , where $\mathbf{F} = \mathbf{ED}$, represent the cost, in cents, of flour, butter and sugar used to make sponge cake and butter cake respectively.


Write down the matrix **E**.

Answer **E** =.....[1]

24 (a) Express $9 - 7x + x^2$ in the form $p + (x + q)^2$.

_____(

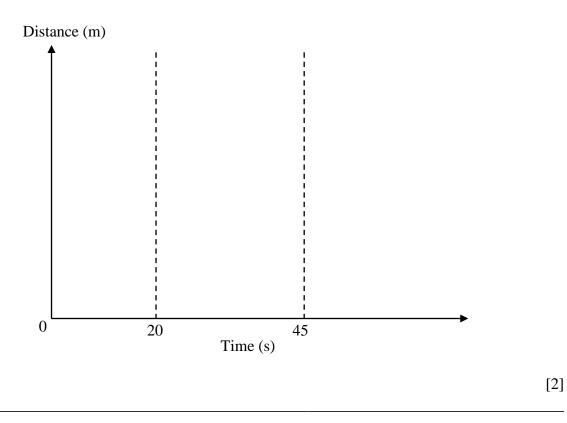

(b) (i) Sketch the graph of $y = 9 - 7x + x^2$ on the axes below. Indicate clearly the coordinates of the points where the graph crosses the

(ii) Write the equation of the line of symmetry of $y = 9 - 7x + x^2$.

[2]

25 The diagram shows the speed – time graph of a moving object.

(a) Calculate the acceleration of the object at time t = 22 s.

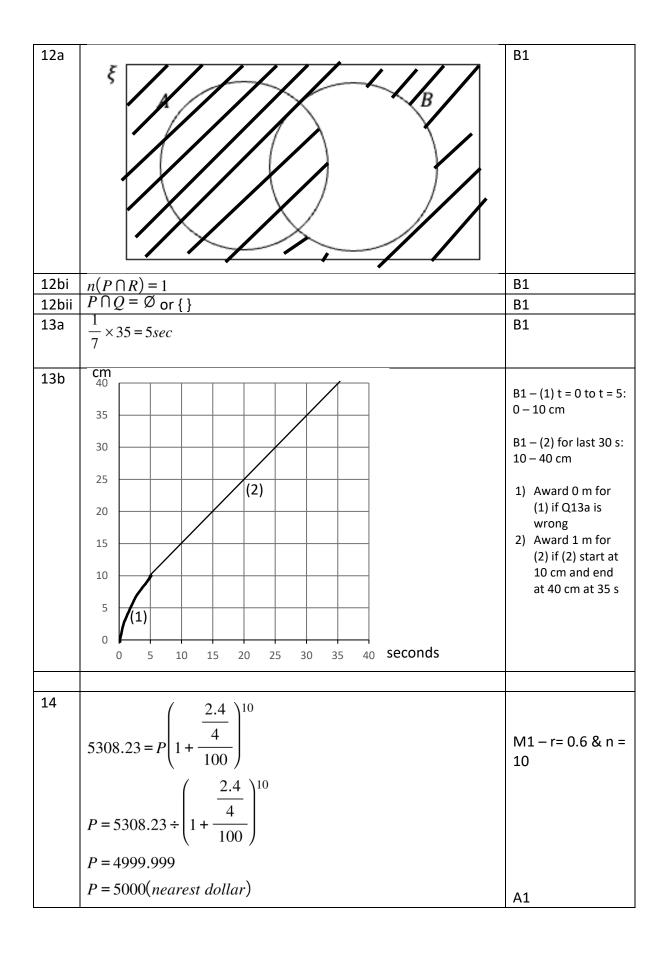

Answer m/s² [1]

(b) Find the speed when t = 4 s.

Answer m/s [2]

(c) Find the value of k if the total distance travelled is 1.35 km.

25 (d) On the axes in the answer space below, sketch the distance – time graph for the first 45 seconds and indicate clearly, on the vertical axis, the distance travelled at t = 20 s and t = 45 s.

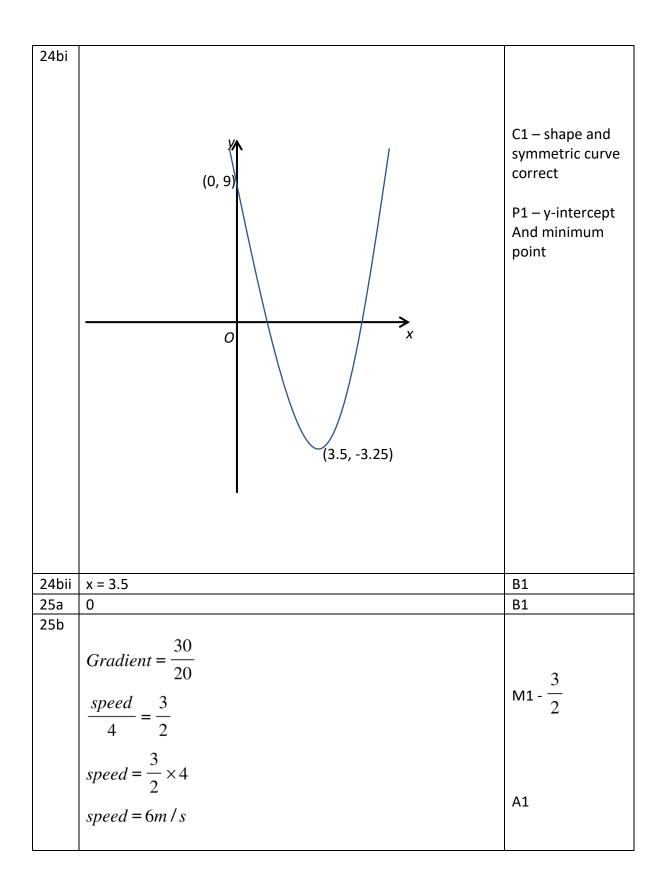


End of paper

Math	scheme to 2022 Sec 4/5 Express Prelim P1	
1	2912.50 - 2500 = 412.50	
	$412.50 = \frac{2500 \times 3 \times T}{100}$	
	100	
	$T = \frac{412.50 \times 100}{100}$	M1 – show
	$1 - 2500 \times 3$	412.50×100
	T = 5.5 years	2500×3 A1
2	Using Pythgoras Theorem,	
	$PQ = \sqrt{19.5^2 + 12.2^2}$	M1 - show either
	$PQ = \sqrt{529.09}$	$\sqrt{\frac{19.5^2 + 12.2^2}{529.09}}$ or
	PQ = 23.00195644	V 529.09
	$PQ = 23.0 \ cm(3s.f.)$ 96×0.5h = 48km	A1
3	$96 \times 0.5h = 48km$	
	120 - 48 = 72km	
	$av speed = \frac{72km}{1.25h}$	M1 – show 72km
	$av speed = \frac{1}{1.25h}$	or 1.25h
	av speed = 57.6 km / h $3 12$	A1
4a	$\frac{3}{-} = \frac{12}{-}$	
	$\overline{7} = \overline{28}$	
	total number of balls = 28	
	28 - 12 - 6 = 10 white balls	B1
4b	let the number of yellow balls added be x.	
	$\frac{6+x}{2} = \frac{7}{2}$	
	28 + x 18	
	18(6+x) = 7(28+x)	
	108 + 18x = 196 + 7x	
	18x - 7x = 196 - 108	
	11x = 88	
	<i>x</i> = 8	B1

5	5x 3(x+4)	
5	$\frac{3x}{3} - \frac{3(x+y)}{2}$	
	$=\frac{2\times 5x}{6} - \frac{3\times 3(x+4)}{6}$	M1 – form
		common
	$=\frac{10x}{6} - \frac{(9x+36)}{6}$	denominator
	$-\frac{-6}{6}$	
	10x - 9x - 36	
	$=\frac{10x-9x-36}{6}$	
	x = 36	A1
	$=\frac{x-36}{6}$ x+x-1+x-2+x-3+x-4=19×5	~1
6a	$x + x - 1 + x - 2 + x - 3 + x - 4 = 19 \times 5$	
	5x - 10 = 95	
	5x = 105	
	105	
	$x = \frac{105}{5}$	
		B1
6b	$\begin{array}{c} x = 21 \\ p, \ p^3, \ p^5 \ are \ negative \ integers. \end{array}$	}
0.0	p^2 , p^4 are positive integers.	, } either
		statement B1
	The ascending order is p^5, p^3, p, p^2, p^4 .	}
	p is the median, instead of p^3 .	}B1
7	Volume of a cuboid = $3 \times 2 \times 2$	
	$=12cm^3$	
	Total Volume of cube = 12×6174	
	$=74088cm^{3}$	M1 – find total
	Length of the cube = $\sqrt[3]{74088}$	volume of cube
	=42cm	A1
8		M1 – show
	100-13.2	86.8% of \$510
	$510 \times \frac{100}{100}$	
	= \$442.68	A1
	OR	
	13.2	
	510×100	M1 – show
	= 67.32	13.2% of \$510
	510 - 67.32 = \$442.68	
	510 07.52 = 9442.00	A1
L	1	/_

$\frac{6}{5} \times \frac{2}{15} = 3$			
$\frac{12}{75x} = 3$			
12 = 225x			
$x = \frac{4}{75}$ or 0.0533 (3s.	f)		B1
3p - 4(6p - 8q)			M1 – expansion
=3p-24p+32q			of -4(6p-8q) A1
= -21p + 32q			AI
Four with a duin le	Costor on do		B1 each
Favourite drink	Sector angle		(deduct 1 mark
Fruit juice	108°		overall for no unit)
Coft duint	1620		unity
Soft drink	162°		Max: B3
Coffee	90°		
interior angle of hexagon $=$ $\frac{6}{2}$	$\frac{(5-2)180}{6}$		M1 finding
= 120°			M1 – finding interior angle
	120°		_
	$ygon = \frac{1}{5} = 24^\circ$		M1 - $\frac{360}{24}$
number of sides = $\frac{360}{24}$			24
<i>n</i> = 15			A1
or			
	$vgon = 180 - 24 = 156^{\circ}$		
180n - 350 = 150n 24n = 360			
$n = \frac{360}{2}$			
	$x = \frac{4}{75} \text{ or } 0.0533 (3s)$ $3p - 4(6p - 8q)$ $= 3p - 24p + 32q$ $= -21p + 32q$ $Favourite drink$ Fruit juice Soft drink Coffee interior angle of hexagon = (0) $interior angle of hexagon = \frac{(0)}{24}$ $rumber of sides = \frac{360}{24}$ $n = 15$ or $interior angle of n - sided poly$ $(n - 2)180 = 156n$ $180n - 350 = 156n$ $24n = 360$	$\frac{12}{75x} = 3$ $12 = 225x$ $x = \frac{4}{75} \text{ or } 0.0533 (3s.f)$ $3p - 4(6p - 8q)$ $= 3p - 24p + 32q$ $= -21p + 32q$ $\boxed{Favourite drink} \qquad Sector angle}$ $\boxed{Fruit juice} \qquad 108^{\circ}$ $\boxed{Soft drink} \qquad 162^{\circ}$ $\boxed{Coffee} \qquad 90^{\circ}$ $interior angle of hexagon = \frac{(6-2)180}{6}$ $= 120^{\circ}$ $exterior angle of n - sided polygon = \frac{120^{\circ}}{5} = 24^{\circ}$ $number of sides = \frac{360}{24}$ $n = 15$ or $interior angle of n - sided polygon = 180 - 24 = 156^{\circ}$ $(n-2)180 = 156n$ $180n - 350 = 156n$ $24n = 360$ $n = \frac{360}{24}$	$\frac{12}{75x} = 3$ $12 = 225x$ $x = \frac{4}{75} \text{ or } 0.0533 (3s,f)$ $3p - 4(6p - 8q)$ $= 3p - 24p + 32q$ $= -21p + 32q$ $\boxed{Favourite drink} \qquad Sector angle}$ $Fruit juice \qquad 108^{\circ}$ $\boxed{Soft drink} \qquad 162^{\circ}$ $\boxed{Coffee \qquad 90^{\circ}}$ $interior angle of hexagon = \frac{(6-2)180}{6}$ $= 120^{\circ}$ $exterior angle of n - sided polygon = \frac{120^{\circ}}{5} = 24^{\circ}$ $number of sides = \frac{360}{24}$ $n = 15$ or $interior angle of n - sided polygon = 180 - 24 = 156^{\circ}$ $(n - 2)180 = 156n$ $180n - 350 = 156n$ $24n = 360$ $n = \frac{360}{24}$



15a		
194	$\angle ABC = \angle ADE (given)$	M1 – must show
	$\frac{AB}{AD} = \frac{6}{15} = \frac{2}{5}$	the same ratio
		and common
	$\frac{BC}{DE} = \frac{9}{22.5} = \frac{2}{5}$	included angle
	Since two pairs of corresponding sides are in the same ratio	
	and one pair of corresponding included angles is the same,	A1 – statement
	$\triangle ACB$ and $\triangle AED$ are similar.	must be stated
	OR	
	$\angle ABC = \angle ADE (given)$	M1 – must show
	$\angle BAC = \angle DAE (common \ angle)$	the two pairs of
	Since two pairs of corresponding angles are the same,	angles
	$\triangle ACB$ and $\triangle AED$ are similar.	A1 – statement
		must be stated
15b	AC AB	
	$\frac{AC}{AE} = \frac{AB}{AD}$	
	$\frac{AC}{20} = \frac{6}{15}$	
	$AC = \frac{6}{15} \times 20$	
	$AC = \frac{15}{15} \times 20$	M1
	AC = 8cm	
	CD = 15 - 8	
	CD = 7cm	AG1
16a		
	$x^2 - (x+y)(x-y)$	M1- show the
	$=x^2 - (x^2 - y^2)$	expansion
	$=y^{2}$	A1
16b	$1288073407^2 - 1288073405 \times 1288073409$	
	$= 1288073407^{2} - (1288073407 - 2) \times (1288073407 + 2)$	
	$= 1288075407 (1288075407 2) \land (1288075407 2)$ $= 4$	B1
L	, — т	

17	k]
17	$p = \frac{\kappa}{q^2}$	
	$p = \frac{k}{q^2}$ $k = pq^2$ $new \ p = \frac{pq^2}{(5q)^2}$	
	$p_{q_{1}} = \frac{pq^{2}}{p_{q_{1}}}$	M1 – either show
	$new p = (5q)^2$	$k = pq^2 \text{ or } 25q^2$
	$new p = \frac{pq^2}{25q^2}$	
	$new \ p = \frac{1}{25}p$	
	$\frac{1}{25}p - p = -\frac{24}{25}p$	
	$\% change = -\frac{24}{25} \times 100$	
	= -96%	A1
18		
	$\left(\frac{36a^2}{b^4}\right)^{-\frac{3}{2}}$	
		M1 – apply
	$=\left(\frac{b^4}{36a^2}\right)^{\frac{3}{2}}$	fractional index,
		either square
	$=\left(\sqrt{\frac{b^4}{36a^2}}\right)^3$	root or cube all terms
		terms
	$=\left(\frac{b^2}{6a}\right)^3$	
	$\begin{pmatrix} 6a \end{pmatrix}$	
	=	
	$216a^3$	A1
19a	$44.72km = 44.72 \times 1000$	
	$\frac{1}{1h} = \frac{1 \times 60 \times 60}{1 \times 60 \times 60}$	
	559	
	$=$ ${45}$	
	19	
	$= 12 \frac{19}{45} \text{ or } 12.4(3sf)$	B1
19bi	$\frac{300}{25} = 12cm$	B1
	25	

19bii	mass of smaller cone $(1)^3$	
1001	$\frac{mass of smaller cone}{mass of larger cone} = \left(\frac{1}{25}\right)^3$	
		$(1)^{2}$
	$\frac{mass \ of \ smaller \ cone}{7200} = \frac{1}{15625}$	M1 - $\left(\frac{1}{25}\right)^3$
	_	(25)
	mass of smaller cone = $\frac{1}{15625} \times 7200$	
	$= 0.4608g \ or \ 0.461g(3sf)$	A1
20		
	$24.249 = \frac{1}{2} \times 7 \times 8 \times \sin \angle ABC$	M1 – applying Area of Triangle,
	$\angle ABC = \sin^{-1} \left(\frac{24.249}{\frac{1}{2} \times 7 \times 8} \right)$	show sin-1
	$\angle ABC = 60.001^{\circ}$	M1 - Find obtuse
	obtuse $\angle ABC = 180 - 60.001 = 119.999^{\circ}$	
	Appling cosine rule,	M2 – apply
	$AC = \sqrt{7^2 + 8^2 - 2(7 \times 8 \times \cos 119.999)}$	cosine rule
	$AC = \sqrt{168.998}$	
	AC = 12.999 AC = 13.0 (3sf)cm	A1
	AC - 15.0 (58) Jem	AT
21a	$LCM = 2^3 \times 3 \times 5$	M1
	= 120 minutes	
	= 2 hours	
	$Time = 09\ 00 \ or\ 9am$	A1
21b	$HCF = 12 = 2^2 \times 3$	M1
	smallest possible value of $x = 2 \times 2^2 \times 3 = 24$	A1
22a		
	$3a^2 + 4b - 6a - 2ab$	
	$=3a^2 - 2ab - 6a + 4b$	
	=a(3a-2b)-2(3a-2b)	M1
	=(a-2)(3a-2b)	A1

22b	$12x^2 - 25x + 12 = 0$	
	(4x-3)(3x-4) = 0	M1
	4x - 3 = 0 or 3x - 4 = 0	
	(4x-3)(3x-4) = 0 4x-3 = 0 or 3x-4 = 0 4x = 3 or 3x = 4	
	$x = \frac{3}{4} \text{ or } x = \frac{4}{3}$	A2
	$x = \frac{1}{4} \text{ or } x = \frac{1}{3}$	
23ai	$AB = \begin{pmatrix} 250 & 250 & 100 \\ 400 & 200 & 90 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$	
	$AB = \begin{pmatrix} 600\\ 690 \end{pmatrix}$	B1 – 600
	$AB = \begin{pmatrix} 690 \end{pmatrix}$	B1-690
23aii	The elements in AB represent the total amount of flour,	B1
	butter and sugar used in making	
23bi	a sponge cake and a butter cake respectively. (20)	B1
	$D = \begin{bmatrix} 48\\15 \end{bmatrix}$	
22hii		P1
23bii	$E = \begin{pmatrix} 2.5 & 2.5 & 1 \\ 4 & 2 & 0.9 \end{pmatrix}$	B1
24a	$9 - 7x + x^2 = x^2 - 7x + 9$	
	$=(x-3.5)^2-3.25$	B13.5
	$= (x - 3.5)^2 - 3.25$ = -3.25 + (x - 3.5)^2	B13.25

25c	$1350 = \frac{1}{2}(25+k)30$	M1
	2700 = (25 + k)30	
	$\frac{2700}{30} = 25 + k$	
	90 = 25 + k	
	90 - 25 = k	
	<i>k</i> = 65	A1
	$\left(\frac{1}{2} \times 20 \times 70\right) + (25 \times 30) + \left(\frac{1}{2} \times (k - 45) \times 30\right) = 1350$	M1
	300 + 750 + 15(k - 45) = 1350	
	15k = 975	A1
25d	<i>k</i> = 65	
250	Distance 1050 10	L1 - Correct label of the distances C1 – correct sketching of graph -1 m if graph is not proportional