

PEICAI SECONDARY SCHOOL SECONDARY 5 NORMAL ACADEMIC PRELIMINARY EXAMINATION 2021

CANDIDATE NAME	SOLUTIONS	
CLASS	REGISTER NU	JMBER

ADDITIONAL MATHEMATICS

Paper 2

4047/02 27 August 2021

2 hours 30 minutes

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your register number, class and name in the spaces at the top of this page. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. The use of an approved scientific calculator is expected, where appropriate. You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

This document consists of **23** printed pages and **1** blank page.

Setter: Mrs Ho Thuk Lan

Mathematical Formulae

1. ALGEBRA

Quadratic Equation For the quadratic equation *ax*

$$c^{2} + bx + c = 0,$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n}$$

we integer and
$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$$

where *n* is a positive integer and

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$
$$\sec^2 A = 1 + \tan^2 A$$
$$\cos ec^2 A = 1 + \cot^2 A$$

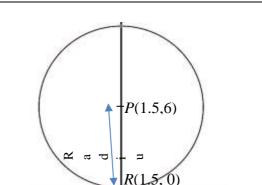
 $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$


Formulae for \DABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

1 Solve the equation
$$2\cos 2x = 3 - 5\sin x$$
 for $\mathbf{ft} \le x \le$ [5]
 $2(1-2\sin^2 x) = 3-5\sin x$
 $4\sin^2 x - 5\sin x + 1 = 0$
 $(\sin x - 1)(4\sin x - 1) = 0$
 $\sin x = 1$
 $x = \frac{\pi}{2} = 1.57$
 $\sin x = \frac{1}{4}$
 $\sin x = \frac{1}{4}$
 $\sin x = \sin^{-1}\frac{1}{4}$
 $x = 0.253, 2.89$

x = 0.253, 1.57, 2.89

Q

The diagram shows two circles C_{-} and C_{2} with centres *P* and *Q* respectively. Both circles C_{-} and C_{2} is tangent to the *x* axis at *R* (1.5, 0). The radius of C_{-} is 6 units.

- (i) Find the coordinates of the centre, *P* of circle C. [1] $P = \begin{pmatrix} 1.5, 6 \end{pmatrix}$
- (ii) Find the equation of the circle $C_{..}$ [1] $(x-1.5)^2 + (y-6)^2 = 36$

(iii) Given that the area of C_{1} is 18 times the area of C_{2} , find the coordinates of the

centre, Q of C_2 .	[3]
$\frac{Area_{C_2}}{Area_{C_1}} = \left(\frac{RQ}{PR}\right)^2$	$Area_{c_1} = \pi (6)^2$ $Area_{c_1} = 36\pi$
$\frac{Area_{C_2}}{18Area_{C_2}} = \left(\frac{RQ}{6}\right)^2$	$Area_{C_2} = \frac{36\pi}{18} = 2\pi$
$\left(\frac{RQ}{6}\right)^2 = \frac{1}{18}$	$Area_{c_2} = \frac{36\pi}{18} = 2\pi$ $\pi (r_2)^2 = 2\pi$ $r_2 = \sqrt{2}$
$RQ = \sqrt{2}$	$r_2 = \sqrt{2}$
$Q = (1.5, \sqrt{2})$	

[Turn over

3 (i) Using
$$\sin 3x = \sin(2x+x)$$
, show that $\sin 3x = 3\sin x - 4\sin^3 x$. [3]

$$\sin 3x = \sin(2x + x)$$

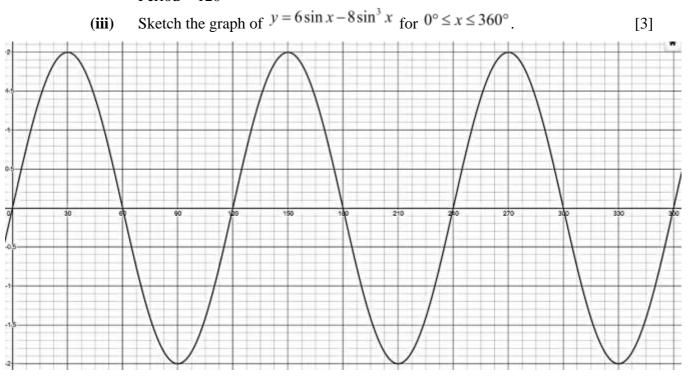
$$\sin 3x = \sin 2x \cos x + \cos 2x \sin x$$

$$\sin 3x = (2 \sin x \cos x) \cos x + (1 - 2 \sin^2 x) \sin x$$

$$\sin 3x = 2 \sin x \cos^2 x + \sin x - 2 \sin^3 x$$

$$\sin 3x = 2 \sin x (1 - \sin^2 x) + \sin x - 2 \sin^3 x$$

$$\sin 3x = 2 \sin x - 2 \sin^3 x + \sin x - 2 \sin^3 x$$


$$\sin 3x = 3 \sin x - 4 \sin^3 x \text{ (shown)}$$

(ii) State the amplitude and period of $y = 6 \sin x - 8 \sin^3 x$. [2]

$$y = 6 \sin x - 8 \sin^3 x$$

$$y = 2(3 \sin x - 4 \sin^3 x)$$

$$y = 2(3\sin x - 4\sin^3 y) = 2\sin 3x$$

 $\begin{array}{l} \text{Amplitude} = 2\\ \text{Period} = 120^{\circ} \end{array}$

4 A glass of hot water was left to cool in the fridge. The temperature, $T \circ C$, of the water decreases with time, *t* minutes. The table shows the measured values of *T* and *t*.

t (min)	10	20	30	40	50
<i>T</i> (°C)	60	37	23	14	9

It is known that t and T are related by the equation $T = ae^{-kt}$ where a and k are constants.

(i) Explain clearly how *a* and *k* can be calculated when a graph of ln *T* against *t* is drawn. [2]

$T = ae^{-it}$	k = gradient
$\ln T = \ln a e^{-kt}$	ln <i>a</i> is the ln T – intercept, <i>c</i>
$\ln T = \ln a + \ln e^{-kt}$	$\ln a = c$
$\ln T = -kt + \ln a$	$a = e^{a}$

t (min)	10	20	30	40	50
$\ln T(^{\circ}\mathrm{C})$	4.09	3.61	3.14	2.64	2.20

(ii) On the grid below, plot $\ln T$ against *t* for the given data and draw a straight line graph. [2]

Use your graph to estimate

(iii) the value of
$$a$$
 and of k .
 [3]

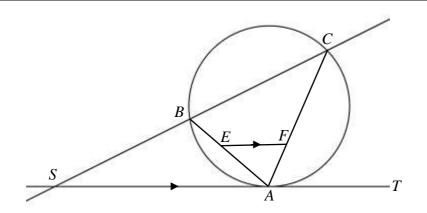
 10
 20
 30
 40
 50

ln *a* is the ln *T* – intercept, *c* $a = e^{a}$ ln *a* = 4.55 $a = e^{4.55}$ a = 94.6 (3SF) (iv) the temperature of the water at the beginning of the experiment. [1] Temperature = 94.6°C

5 A bus travelling on a straight road passes a traffic light at junction P with speed 11 m/s and, 2 minutes later, passes another traffic light at junction Q with speed

21 m/s. During the journey from *P* to *Q*, the acceleration, a = kt - 2 m/s², where *k* is a constant and *t* seconds is the time after passing *P*.

(i) Show that
$$k = \frac{5}{144}$$
. [5]


Speed = 11 m/s 2 min later Speed = 21 m/s Q

	At Q , $t = 2 \min$, $v = 21$ m/s
a = kt - 2	$21 = \frac{k(120)^2}{2} - 2(120) + 11$
$v = \frac{kt^2}{2} - 2t + c$	$21 = \frac{2}{2} - 2(120) + 11$
	21 = 7200k - 229
At $P, t = 0, v = 11$	7200k = 250
$11 = \frac{k0^2}{2} - 2(0) + c$	- 200 - 200
2 2(0)+0	$k = \frac{5}{1}$
c = 11	144
kt^2	
$v = \frac{kt^2}{2} - 2t + 11$	

(ii) Find the distance between P and Q.

velocity,
$$v = \frac{5t^2}{288} - 2t + 11$$

displacement, $s = \frac{5t^3}{288(3)} - t^2 + 11t + c$
 $s = \frac{5}{864}t^3 - t^2 + 11t + c$
 $s = \frac{5}{864}t^3 - t^2 + 11t + c$
 $s = \frac{5}{864}t^3 - t^2 + 11t + c$
 $s = \frac{5}{864}(120)^3 - (120)^2 + 11(120)$
 $s = -3080$
Distance = 3080 m

6

The diagram shows a circle passing through the points A, B and C. The point B lies on the line SC. ST is a tangent to the circle at A. The points E and F lie on AB and AC respectively. Given that EF is parallel to ST, show that BCFE is a cyclic quadrilateral.

BAS = ACB (Alternate segment Theorem) BAS = AEF (Alternate angles, EF//ST) $BEF = 180^{\circ} \quad AEF \text{ (Adjacent angles on a straight line)}$ $BEF = 180^{\circ} \quad BAS = 180^{\circ} \quad ACB$ $ACB + BEF = ACB + 180^{\circ} \quad ACB$ $ACB + BEF = = 180^{\circ}$

CAT = ABC (Alternate segment Theorem) CAT = EFA (Alternate angles, EF//ST) $EFC = 180^{\circ}$ EFA (Adjacent angles on a straight line) $EFC = 180^{\circ}$ $CAT = 180^{\circ}$ ABC $ABC + EFC = ABC + 180^{\circ}$ ABC $ABC + EFC = 180^{\circ}$

Since $ACB + BEF = 180^{\circ}$ (angles in opposite segments) and $ABC + EFC = 180^{\circ}$ (angles in opposite segments) Therfore *BCFE* is a cyclic quadrilateral. [5]

8

The equation of a polynomial given is by $f(x)=3x^3+5x^2+7x-3$. 7 Find the remainder when f(x) is divided by x + 1. (i) [1] $f(-1) = 3(-1)^3 + 5(-1)^2 + 7(-1) - 3$ f(-1) = -3 + 5 - 7 - 3 = -8Remainder = 8(i) Show that 3x = 1 is a factor of f(x). [1] $f\left(\frac{1}{3}\right) = 3\left(\frac{1}{3}\right)^3 + 5\left(\frac{1}{3}\right)^2 + 7\left(\frac{1}{3}\right) - 3$ $f\left(\frac{1}{3}\right) = \left(\frac{1}{9}\right) + \left(\frac{5}{9}\right) + \left(\frac{7}{3}\right) - 3$ $f\left(\frac{1}{3}\right) = 0$ $f\left(\frac{1}{3}\right) = 0$, therefore 3x = 1 is a factor of f(x). (iii) Show that the equation f(x) = 0 has only one real root. [4] $x^2 + 2x + 3$ $3x-1)3x^3+5x^2+7x-3$ $\frac{-3x^3 + x^2}{6x^2 + 7x - 3}$ $-6x^2 + 2x$ 9x-3 -9x + 3

$$f(x)=3x^{3}+5x^{2}+7x-3$$

$$f(x) = (3x-1)(x^{2}+2x+3)$$

$$f(x) = 0$$

$$(3x-1)(x^{2}+2x+3) = 0$$

$$x = \frac{1}{3} \text{ or } x = \frac{-2 \pm \sqrt{-8}}{2}$$

Since $\sqrt{-8}$ is undefined, there are no real roots for $x^2 + 2x + 3 = 0$. Hence f(x) = 0 has only one real root.

(iv) Use your answers to parts (ii) and (iii) to solve the equation

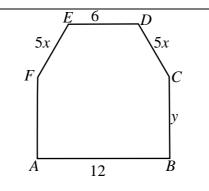
$$\frac{3}{2}(2^{3y+1})+5(2^{2y})+7(2^{y})=3$$

$$3(2^{-1})(2^{3y})(2^{1})+5(2^{y})^{2}+7(2^{y})=3$$

$$3(2^{-1})(2^{3y})(2^{1})+5(2^{y})^{2}+7(2^{y})=3$$

$$3(2^{3y})+5(2^{y})^{2}+7(2^{y})=3$$
Let $x = 2^{y}$

$$3x^{3}+5x^{2}+7x-3=0$$


$$(3x-1)(x^{2}+2x+3)=0$$

$$x = \frac{1}{3}$$

$$1g 2^{y} = 1g\frac{1}{3}$$

$$y = \frac{1g\frac{1}{3}}{1g2}$$

$$y = -1.58 (3SF)$$

A contractor was given 240m of fencing for a playground, He designed the playground *ABCDEF* consisting of a rectangle *ABCF* and an isosceles trapezium *CDEF*. Given that AB = 12 m, DE = 6 m, CD = EF = 5x m and BC = y m.

(i) The contractor used 240 m of fencing to enclose the playground. Express y in terms of x. [1]

2y+12+6+10x = 240y=111-5x

(ii) Show that the enclosed area, $A \text{ m}^3$, of the playground is given by $A = 1332 - 60x + 9\sqrt{25x^2 - 9}$. [2]

Height of trapezium = $\sqrt{(5x)^2 - (3)^2} = \sqrt{25x^2 - 9}$ Area = $\frac{12y + \frac{1}{2}(12 + 6)\sqrt{25x^2 - 9}}{4 = 12(111 - 5x) + 9\sqrt{25x^2 - 9}}$ $A = 1332 - 60x + 9\sqrt{25x^2 - 9}$

8

Given that x can vary, find the stationary value of A.

$$A = 1332 - 60x + 9\sqrt{25x^2 - 9}$$

$$A = 1332 - 60x + 9(25x^2 - 9)^{\frac{1}{2}}$$

$$\frac{dA}{dx} = -60 + \frac{9}{2}(25x^2 - 9)^{-\frac{1}{2}}(50x)$$

$$\frac{dA}{dx} = -60 + 225x(25x^2 - 9)^{-\frac{1}{2}}$$

$$\frac{dA}{dx} = -60 + \frac{225x}{\sqrt{25x^2 - 9}}$$
For stationary point, $\frac{dA}{dx} = 0$
For stationary point, $\frac{dA}{dx} = 0$

$$-60 + \frac{225x}{\sqrt{25x^2 - 9}} = 0$$

$$\frac{225x}{\sqrt{25x^2 - 9}} = 60$$

(iii)

A =

A =

-60

$$\sqrt{25x^{2}-9} = \frac{225x}{60}$$
$$\sqrt{25x^{2}-9} = \frac{15x}{4}$$
$$\sqrt{25x^{2}-9} = \frac{15x}{4}$$
$$\sqrt{25x^{2}-9} = \frac{15x}{4}$$

$$\frac{175}{16}x^{2} = 9$$

$$x = \sqrt{\frac{144}{175}}$$

$$A = 1332 - 60\left(\sqrt{\frac{144}{175}}\right) + 9\sqrt{25}\left(\sqrt{\frac{144}{175}}\right)^{2} - 9$$

$$A = 1332 - 60\left(\frac{12}{5\sqrt{7}}\right) + 9\sqrt{25}\left(\frac{144}{175}\right) - 9$$

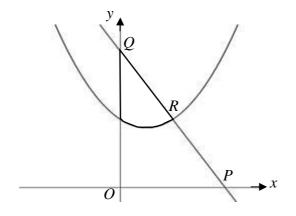
$$A = 1332 - \frac{144}{\sqrt{7}} + 9\sqrt{\frac{81}{7}}$$

$$A = 1308.188238 \text{ m}^{2}$$

$$A = 1310 \text{ m}^{2} (3\text{SF})$$

Stationary value of $A = 1310 \text{ m}^2$ (3SF)

(iv) Find the nature of this stationary value. Would the contractor be happy or disappointed with the design of his playground? [3]


$\frac{dA}{dx} = -60 + \frac{225x}{\sqrt{25x^2 - 9}}$	$x = \sqrt{\frac{144}{175}}$
$\frac{dA}{dx} = -60 + 225x \left(25x^2 - 9\right)^{-\frac{1}{2}}$ $\frac{d^2A}{dx^2} = 225x \left[-\frac{1}{2} \left(25x^2 - 9\right)^{-\frac{3}{2}} (50x)\right] + 225 \left(25x^2 - 9\right)^{-\frac{1}{2}}$	$\frac{d^2 A}{dx^2} = \frac{-2025}{\left(25\left(\sqrt{\frac{144}{175}}\right)^2 - 9\right)\sqrt{25\left(\sqrt{\frac{144}{175}}\right)^2 - 9}}$
$\frac{d^2 A}{dx^2} = -5625x^2 \left[\left(25x^2 - 9 \right)^{-\frac{3}{2}} \right] + 225 \left(25x^2 - 9 \right)^{-\frac{1}{2}}$	$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{-2025}{\left(\frac{81}{7}\right)\left(\sqrt{\frac{81}{7}}\right)}$
$\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{-5625x^2}{\left(25x^2 - 9\right)\sqrt{25x^2 - 9}} + \frac{225}{\sqrt{25x^2 - 9}}$ $\frac{\mathrm{d}^2 A}{\mathrm{d}x^2} = \frac{-5625x^2 + 225(25x^2 - 9)}{\left(25x^2 - 9\right)\sqrt{25x^2 - 9}}$	$\frac{d^2 A}{dx^2} = -51.44516438 < 0$ $d^2 A$
$\frac{d^2 A}{dx^2} = \frac{-2025}{(25x^2 - 9)\sqrt{25x^2 - 9}}$	$\frac{d^2 A}{dx^2} < 0$, the area of the playground is a maximum.

Method 2:

x	0.90	$x = \sqrt{\frac{144}{175}} = 0.907114$	0.92
$\frac{\mathrm{d}y}{\mathrm{d}x}$	+	0	
Sketch of tangent			

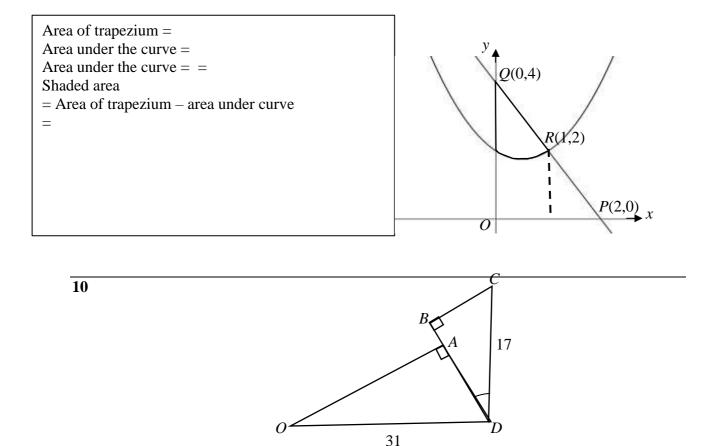
Sketch of curve	Maximum curve	
-----------------	---------------	--

As the area of the playground is maximised, the contractor is not disappointed with the design.

The diagram shows part of the curve $y = x^2 - x + h$ and the line y = 4 - 2x. The line y = 4 - 2x intersects the x axis and the y axis at P and Q respectively. Given that R is the point of intersection of the line y = 4 - 2x and the curve $y = x^2 - x + h$ and that R is the midpoint of PQ, find

(i) the coordinates of R,

$\begin{array}{l} \text{At } P, \ y = 0\\ 4 - 2x = 0 \end{array}$	$\begin{array}{l} \operatorname{At} Q, x = 0 \\ y = 4 - 2(0) \end{array}$	$R = \left(\frac{2+0}{2}, \frac{0+4}{4}\right)$
$\begin{array}{l} x = 2\\ P = (2, 0) \end{array}$	y = 4 $Q = (0, 4)$	R = (1, 2)


(i) the value of h,

 $y = x^{2} - x + h$ At R(1, 2) $2 = 1^{2} - 1 + h$ h = 2 [1]

[3]

[Turn over

(ii) the area of the shaded region.

The diagram shows three fixed points *O*, *C* and *D* such that OD = 31 cm, CD = 17 cm and angle $ODC = 90^{\circ}$. The lines *OA* and *BC* are perpendicular to the line *BD* which makes an angle \backslash with the line *CD*. The angle \backslash can vary in such a way that the point *A* lies between the points *B* and *D*.

(i) Show	w that $OA + AB + BC = 48$ of	$\cos(14 \sin(.$	[3]
In $\otimes BCD$,	In $\otimes OAD$,	OA + AB + BC	
BC BC	Since angle $ODC=90^\circ$,	$= 31 \cos \left(+ (17 \cos \left(31 \sin \left(\right) + 17 \sin \left(\right) \right) \right) + 17 \sin \left(17 \sin \left($	
$\Theta in = \frac{BC}{17}$	$AOD = \langle$		
$\Box BC = 17 \sin \zeta$	$\theta_{OS} = -\frac{OA}{A}$	$OA + AB + BC = 48 \cos (14 \sin (. (Shown)))$	
BD	$\theta_{\text{os}} = \frac{31}{31}$		
$\theta_{\text{os}} = \frac{BB}{17}$	$\Box OA = 31 \cos \sqrt{2}$		
$\Box BD = 17 \cos \zeta$	Θ in = $\frac{AD}{D}$		
	31		
	$\Box AD = 31 \sin \langle$		
	AB = BD AD		
	$AB = 17 \cos \langle 31 \sin \langle \rangle$		

(ii) Express OA + AB + BC in the form $R \theta os() + \alpha$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]

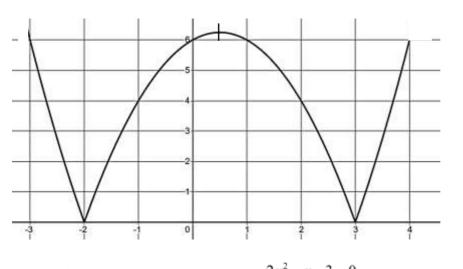
14

$$R = \sqrt{48^2 + 14^2} = 50 \qquad \alpha = \tan^{-1} \left(\frac{14}{48}\right) = 16.26020471^\circ$$

$$48 \cos \left(14 \sin \left(= \frac{60 \cos \beta}{48} \right) \right)^\circ$$

(iii) Find the values of
$$\int$$
 for which $OA + AB + BC = 30$. [4]

 $\begin{aligned} \theta 0 \, dds \beta & \neq 30^{\circ} = \\ \theta os(6:\beta) & \circ = \frac{3}{5} \\ \text{Basic angle}, \alpha &= \cos^{-1} \frac{3}{5} = 53.1301^{\circ} \\ \theta + 16.2602^{\circ} &= 53.1301^{\circ}, 360^{\circ} - 53.1301^{\circ} \\ \theta &= 36.9^{\circ}, 290.6^{\circ} \text{ (rejected)} \end{aligned}$


The equation of a curve is $y = x \sin x$. 11 Find an expression for dx. (i) [2] $y = x \sin x$ $\frac{\mathrm{d}y}{\mathrm{d}x} = x\cos x + \sin x$ **Hence** find $\int x \cos x \, dx$. (ii) [2] $\frac{\mathrm{d}}{\mathrm{d}x}x\sin x = x\cos x + \sin x$ $x\sin x = \int (x\cos x + \sin x) dx$ $x\sin x = \int (x\cos x + \sin x) \, \mathrm{d}x$ $x\sin x = \int (x\cos x) \, \mathrm{d}x + \int \sin x \, \mathrm{d}x$ $\int (x\cos x) \, \mathrm{d}x = x\sin x - \int \sin x \, \mathrm{d}x$ $\int (x\cos x) \, \mathrm{d}x = x\sin x - \int \sin x \, \mathrm{d}x$ $\int (x\cos x) \, \mathrm{d}x = x\sin x + \cos x + c$ Find an expression for $\frac{d}{dx}(x^2 \cos x)$ (iii) [2] $\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2\cos x\right) = 2x\cos x + (-\sin x)x^2$

[Turn over

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2\cos x\right) = 2x\cos x - x^2\sin x$$

(i) Using the result found in part (ii) and part (iii), find
$$\int x^2 \sin x \, dx$$
. [4]
 $\frac{d}{dx} (x^2 \cos x) = 2x \cos x + (-\sin x)x^2$
 $(x^2 \cos x) = \int [2x \cos x + (-\sin x)x^2] \, dx$
 $x^2 \cos x = \int 2x \cos x \, dx - \int x^2 \sin x \, dx$
 $\int x^2 \sin x \, dx = 2\int x \cos x \, dx - x^2 \cos x$
 $\int x^2 \sin x \, dx = 2(x \sin x + \cos x + c) - x^2 \cos x$
 $\int x^2 \sin x \, dx = 2x \sin x + 2 \cos x - x^2 \cos x + d$
where $d = 2c$

12 (a) Sketch the curve of $y = |6 + x - x^2|$ for $-3 \le x \le 4$, indicating clearly the intercepts and the turning point. [2]

(b) The quadratic equation
$$2x^2 - x - 3 = 0$$
 has roots \langle and \circledast . Find
(i) the value of $\alpha^3 + \beta^3$. [5]
Sum of roots, $\alpha + \beta = -\frac{-1}{2} = \frac{1}{2}$
Product of roots, $\alpha\beta = \frac{-3}{2} = -\frac{3}{2}$

$$\alpha^{3} + \beta^{3} = (\alpha + \beta)(\alpha^{2} - \alpha\beta + \beta^{2})$$

$$(\alpha + \beta)^{2} = \alpha^{2} + 2\alpha\beta + \beta^{2}$$

$$(\alpha + \beta)^{2} - 2\alpha\beta = \alpha^{2} + \beta^{2}$$

$$(\alpha + \beta)^{2} - 2\alpha\beta - \alpha\beta = \alpha^{2} + \beta^{2} - \alpha\beta$$

$$(\alpha + \beta)^{2} - 3\alpha\beta = \alpha^{2} + \beta^{2} - \alpha\beta$$

$$\alpha^{3} + \beta^{3} = (\alpha + \beta)\left[(\alpha + \beta)^{2} - 3\alpha\beta\right]$$

$$\alpha^{3} + \beta^{3} = \left(\frac{1}{2}\right)\left[\left(\frac{1}{2}\right)^{2} - 3\left(-\frac{3}{2}\right)\right]$$

$$\alpha^{3} + \beta^{3} = \left(\frac{1}{2}\right)\left[\left(\frac{1}{4}\right) + \left(\frac{9}{2}\right)\right]$$

$$\alpha^{3} + \beta^{3} = \left(\frac{1}{2}\right)\left[\left(\frac{1 + 18}{4}\right)\right]$$

$$\alpha^{3} + \beta^{3} = \frac{19}{8}$$

(ii) a quadratic equation with roots
$$\frac{1}{\alpha}$$
 and $\frac{1}{\beta}$. [3]

$$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} = \frac{\frac{1}{2}}{-\frac{3}{2}} = -\frac{1}{3}$$

Sum of roots,

$$\frac{1}{\alpha}\frac{1}{\beta} = \frac{1}{\alpha\beta} = \frac{1}{-\frac{3}{2}} = -\frac{2}{3}$$

Product of roots,

Quadratic equation:

$$x^2 - (\text{sum of roots})x + (\text{product of root}) = 0$$

$$x^2 + \frac{1}{3}x - \frac{2}{3} = 0$$

END OF PAPER